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7.1. Derivative operator on different spaces

(a) The operator d
dt

: C1([0, 1]) ⊂ C0([0, 1]) → C0([0, 1]) is not bounded. A coun-
terexample are the functions fn ∈ C1([0, 1]) for n ∈ N given by fn(t) = tn. Indeed,

‖fn‖C0([0,1]) = max
t∈[0,1]

tn = 1,

‖ d
dt
fn‖C0([0,1]) = max

t∈[0,1]
ntn−1 = n,

⇒
‖ d

dt
fn‖C0([0,1])

‖fn‖C0([0,1])
= n.

To check, whether the operator is closable, we consider a sequence (uk)k∈N of functions
uk ∈ C1([0, 1]) such that ‖uk‖C0([0,1]) → 0 as k → ∞. Suppose, v ∈ C0([0, 1]) is a
limit of vk := d

dt
uk in the sense that ‖v − vk‖C0([0,1]) → 0. Does v = 0 follow? Yes, in

fact, for any ϕ ∈ C∞c (]0, 1[), integration by parts yields (the boundary terms vanish
due to ϕ(0) = 0 = ϕ(1))∣∣∣∣∫ 1

0
vk(t)ϕ(t) dt

∣∣∣∣ =
∣∣∣∣− ∫ 1

0
uk(t)ϕ′(t) dt

∣∣∣∣ ≤ (∫ 1

0
|ϕ′(t)| dt

)
‖uk‖C0([0,1])

k→∞−−−→ 0.

Since ‖v − vk‖C0([0,1]) → 0 implies∫ 1

0
v(t)ϕ(t) dt = lim

k→∞

∫ 1

0
vk(t)ϕ(t) dt = 0

and since ϕ ∈ C∞c (]0, 1[) is arbitrary, we have v(t) = 0 for almost every t ∈ [0, 1]. As
v is continuous, this implies v ≡ 0 on [0, 1]. Therefore, the operator is closable.

(b) The operator d
dt

: C1([0, 1]) ⊂ L2([0, 1]) → L2([0, 1]) is not bounded. A coun-
terexample are the functions gn ∈ C1([0, 1]) for n ∈ N given by gn(t) = ent. Indeed,

‖gn‖L2([0,1]) =
(∫ 1

0
e2nt dt

) 1
2

= 1√
2n
,

‖ d
dt
gn‖L2([0,1]) =

(∫ 1

0
(nent)2 dt

) 1
2

= n√
2n
,

⇒
‖ d

dt
gn‖L2([0,1])

‖gn‖L2([0,1])
= n.

To check, whether the operator is closable, we consider a sequence (uk)k∈N of functions
uk ∈ C1([0, 1]) such that ‖uk‖L2([0,1]) → 0 as k →∞. Suppose, v ∈ L2([0, 1]) is a limit
of vk := d

dt
uk in the sense that ‖v − vk‖L2([0,1]) → 0. Does v = 0 follow? Yes, in fact,

for any ϕ ∈ C∞c (]0, 1[) using Hölder’s inequality, we have∣∣∣∣∫ 1

0
vk(t)ϕ(t) dt

∣∣∣∣ =
∣∣∣∣− ∫ 1

0
uk(t)ϕ′(t) dt

∣∣∣∣ ≤ ‖uk‖L2([0,1])‖ϕ
′‖L2([0,1])

n→∞−−−→ 0.

Since ‖v− vk‖L2([0,1]) → 0 implies (for instance by continuity of the L2-scalar product)∫ 1

0
v(t)ϕ(t) dt = lim

k→∞

∫ 1

0
vk(t)ϕ(t) dt = 0

and since ϕ ∈ C∞c (]0, 1[) is arbitrary, we have v = 0 in L2([0, 1]). (For that we do not
care about the values at t = 0 or t = 1.) Therefore, the operator is closable.
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7.2. Complementing subspaces of finite dimension or codimension

(a) Let e1, . . . , en be a basis of the given finite-dimensional subspace U ⊂ X. For
i ∈ {1, . . . , n}, we define the linear functionals fi : U → R by

fi(ej) = δij :=

1, if i = j,

0, else.
Recall that by linearity, it suffices to define the functionals on a basis of U . Since U
is finite-dimensional, fi ∈ L(U ;R). From the Hahn-Banach Theorem follows (Satz
4.1.3) that there exist extensions Fi ∈ L(X;R) with ‖Fi‖ = ‖fi‖. We define

P : X → X

x 7→
n∑

i=1
Fi(x) ei.

Then, P is linear and also continuous, since

‖Px‖X ≤
( n∑

i=1
‖Fi‖‖ei‖X

)
‖x‖X .

By construction, P (X) ⊂ span{e1, . . . , en} = U . By definition of fi and Fi we have
P (ei) = ei for every i ∈ {1, . . . , n}. Therefore, P (X) = U . Finally, for every x ∈ X,

(P ◦ P )(x) = P
( n∑

i=1
Fi(x) ei

)
=

n∑
i=1

Fi(x)P (ei) =
n∑

i=1
Fi(x) ei = P (x).

From Problem 5.6 (a) then follows that U is topologically complemented.

(b) Recall that the quotient space X/U consists of equivalence classes which we
denote by [x] and comes with a canonical quotient map π : X → X/U . Since
dim(X/U) = m < ∞ we can choose a basis [e1], . . . , [em] for X/U along with a
representative ei ∈ X for each element [ei] of the basis. As in (a) we define linear
functionals fi : X/U → R for i ∈ {1, . . . ,m} by fi([ej]) = δij. Now, we just set
Fi := fi ◦ π : X → R in order to define

P : X → X

x 7→
n∑

i=1
Fi(x) ei.

Since Fi(ej) = fi(π(ej)) = fi([ej]) = δij we have P ◦ P = P as in (a). Since
[e1], . . . , [em] is a basis for X/U , the representatives e1, . . . , em must be linearly
independent in X. Therefore, P (x) = 0 implies Fi(x) = fi([x]) = 0 for every
i ∈ {1, . . . , n} which in turn implies [x] = [0] or x ∈ U . Conversely, x ∈ U implies
π(x) = [0] and P (x) = 0. Thus we have shown ker(P ) = U . As in Problem 5.6 (a),
we conclude that (1− P ) is a continuous projection onto U which implies that U is
topologically complemented.
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7.3. Dense kernel
Given a normed space (X, ‖·‖X), the claim is that the linear map 0 6≡ f : X → R is
not continuous if and only if ker(f) is dense in X.

“⇒” Suppose, f is not continuous. Then there exists a sequence (xk)k∈N in X, which
can be normed to ‖xk‖X = 1 by linearity of f , such that |f(xk)| → ∞ as k → ∞.
Without loss of generality, we can assume f(xk) 6= 0 for every k ∈ N. The goal is to
approximate any z ∈ X by elements yk ∈ ker(f). For each k ∈ N we define

yk := z − f(z)
f(xk)xk, ⇒ f(yk) = f(z)− f(z)

f(xk)f(xk) = 0 ⇒ yk ∈ ker(f).

Indeed, the sequence (yk)k∈N approximates z in X because

‖z − yk‖X =
∣∣∣∣ f(z)
f(xk)

∣∣∣∣‖xk‖X = |f(z)|
|f(xk)|

k→∞−−−→ 0

and we have shown that ker(f) is dense in X.

“⇐” Conversely, we assume ker(f) = X and claim that f is not continuous. Since
we assume f 6≡ 0 there exists x ∈ X with f(x) 6= 0. Since the kernel is dense, there
exists a sequence (xk)k∈N in ker(f) with ‖xk − x‖X → 0 as k →∞. But this violates
continuity: lim

k→∞
f(xk) = 0 6= f(x).

7.4. Attaining the distance from the kernel
Given a normed space (X, ‖·‖X), a continuous linear functional ϕ : X → R with kernel
N := ker(ϕ) ( X and a point x0 ∈ X \N , the claim is equivalence of

(i) There exists y0 ∈ N with ‖x0 − y0‖X = dist(x0, N) =: d,

(ii) There exists x1 ∈ X with ‖x1‖X = 1 and ‖ϕ‖ = |ϕ(x1)|.

The first isomorphism theorem states that the quotient space X/N is isomorphic to
the image of ϕ. Since ϕ(x0) 6= 0 and ϕ(λx0) = λϕ(x0) for every λ ∈ R, the image of ϕ
is R which means that X/N is one-dimensional. Therefore, every element [x] ∈ X/N
is of the form [x] = t[x0] with uniquely determined t ∈ R. This means that every
element x ∈ X is of the form x = tx0 + y with uniquely determined t ∈ R and y ∈ N .

“(i)⇒ (ii)” Let x1 = 1
d
(x0 − y0). Then ‖x1‖X = 1. We hope that |ϕ(x1)| = ‖ϕ‖ and

start estimating

|ϕ(x1)| =
|ϕ(x1)|
‖x1‖X

≤ sup
x∈X

|ϕ(x)|
‖x‖X

= ‖ϕ‖.
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Given any x ∈ X, let t ∈ R and y ∈ N be as above. If t = 0, then ϕ(x) = 0 is not
interesting. Therefore, we assume t 6= 0 and observe

|ϕ(x)| = |ϕ(tx0 + y)| = |ϕ(td x1 + t y0 + y)| = |t|d |ϕ(x1)|,

‖x‖X = ‖tx0 + y‖X = |t|‖x0 + 1
t
y‖X ≥ |t| inf

ỹ∈N
‖x0 − ỹ‖X = |t|d.

This implies that

|ϕ(x1)| =
|ϕ(x1)|
‖x1‖X

≤ sup
x∈X

|ϕ(x)|
‖x‖X

≤ |t|d |ϕ(x1)|
|t|d

= |ϕ(x1)|.

Thus, the inequalities above are in fact identities and we conclude |ϕ(x1)| = ‖ϕ‖.

“(ii) ⇒ (i)” As above, we have x1 = tx0 + y1 for uniquely determined t ∈ R and
y1 ∈ N . In fact, t 6= 0 since |ϕ(x1)| = ‖ϕ‖ 6= 0. Therefore, x0 = 1

t
(x1 − y1) and

‖x0 + 1
t
y1‖X = ‖1

t
x1‖X = 1

|t|
.

In the following, we use the fact that any z ∈ X satisfies the estimate

‖ϕ‖ ≥ |ϕ(z)|
‖z‖X

⇒ ‖z‖X ≥
|ϕ(z)|
‖ϕ‖

.

Given any y ∈ N , we have

‖x0 − y‖X = ‖1
t
x1 − 1

t
y1 − y‖X

≥
|ϕ(1

t
x1 − 1

t
y1 − y)|

‖ϕ‖
= |ϕ(x1)|
|t|‖ϕ‖

= 1
|t|

= ‖x0 + 1
t
y1‖X .

Since y0 := −1
t
y1 ∈ N we conclude that y0 attains dist(x0, N).

7.5. Not attaining the distance from the kernel
From problem 4.5 (a) we know that ϕ : X → R is a continuous linear functioal.
Therefore N = ker(ϕ) is a closed subspace of X. From problem 4.5 (b) we know that
‖ϕ‖ = 2. From problem 4.5 (c) we know that there does not exist any x1 ∈ X with
‖x1‖X = 1 and |ϕ(x1)| = 2 = ‖ϕ‖. From problem 7.4 we know that this is equivalent
to the statement that there does not exist any y0 ∈ N with ‖x0 − y0‖ = dist(x0, N).
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7.6. Unique extension of functionals on Hilbert spaces
As a continuous linear operator f : Y ⊂ H → R is closable. Let f be its closure. We
claim that D(f) = Y . A priori, we only know D(f) ⊂ D(f) = Y . Therefore, we
consider y ∈ Y together with a sequence (yk)k∈N in Y such that ‖y − yk‖H → 0 as
k →∞. From

|f(yn)− f(ym)| ≤ ‖f‖‖yn − ym‖H ,

we conclude that (f(yk))k∈N is a Cauchy-sequence in R. Thus, there exists z ∈ R such
that f(yk)→ z as k →∞. This means that (y, z) is in the closure of the graph of f
and we conclude y ∈ D(f). Moreover, by continuity of the norm,

|f(y)| = lim
k→∞
|f(yk)| ≤ lim

k→∞
‖f‖‖yk‖H = ‖f‖‖y‖H ⇒ ‖f‖ = ‖f‖.

The argument above shows that in order to extend f : Y → R, we can first uniquely
extend to f : Y → R without changing the norm and then extend to F : H → R with
the advantage that we can now work with the closed subspace Y . In fact, (Y , (·, ·)H)
is a Hilbert space! This allows us to apply the Riesz representation theorem: There
exists a unique h ∈ Y such that for all y ∈ Y

f(y) = (y, h)H .

This suggests the extension

F : H → R
x 7→ (x, h)H

which satisfies ‖F‖ = ‖h‖H = ‖f‖ = ‖f‖. Is this extension unique? If F̃ : H → R is
another extension of f with ‖F̃‖ = ‖f‖ then it must be also of the form F̃ (x) = (x, h̃)H

for some h̃ ∈ H by the Riesz representation theorem. Is h = h̃? Since F̃ |Y = f = F |Y ,
we have

∀y ∈ Y : 0 = F (y)− F̃ (y) = (y, h)H − (y, h̃)H = (y, h− h̃)H

which implies h− h̃ ∈ Y ⊥. Since h ∈ Y and ‖h‖H = ‖F‖ = ‖F̃‖ = ‖h̃‖, we have

‖h‖2
H = ‖h̃‖2

H = ‖h̃− h+ h‖2
H = ‖h̃− h‖2

H + ‖h‖2
H ,

where we used (h̃− h) ⊥ h. This implies ‖h̃− h‖2
H = 0. Therefore, F is the unique

extension of f with ‖F‖ = ‖f‖.
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7.7. Distance from convex sets in Hilbert spaces
Without loss of generality, we can assume x = 0. Otherwise we apply the translation
y 7→ y − x which is an isometry to the entire space H.

(a) Let (xn)n∈N be a sequence in the convex set Q ⊂ H with ‖xn‖ → d = dist(0, Q)
as n→∞. By convexity of Q, the implications

xn, xm ∈ Q ⇒ xn + xm

2 ∈ Q ⇒
∥∥∥∥xn + xm

2

∥∥∥∥
H
≥ dist(0, Q) = d

hold for all n,m ∈ N. The parallelogram identity “‖x+y‖2+‖x−y‖2 = 2(‖x‖2+‖y‖2)”
which is true in Hilbert spaces yields

‖xn − xm‖2
H = 2‖xn‖2

H + 2‖xm‖2
H − ‖xn + xm‖2

H

= 2‖xn‖2
H + 2‖xm‖2

H − 4
∥∥∥∥xn + xm

2

∥∥∥∥2

H
≤ 2‖xn‖2

H + 2‖xm‖2
H − 4d2.

From 2‖xn‖2
H → 2d2 as n→∞, we conclude that (xn)n∈N is a Cauchy-sequence in H.

(b) Now we assume that the convex set Q ⊂ H is closed. Let (xn)n∈N be a sequence
in Q with ‖xn‖H → d = dist(0, Q) as n → ∞. According to (a), it must be a
Cauchy-sequence. Since H is complete, (xn)n∈N converges to some y ∈ H. In fact,
y ∈ Q since Q is closed.

Suppose there is another point ỹ ∈ Q with ‖ỹ‖ = d. Then, again by convexity and
the parallelogram identity,

d2 ≤
∥∥∥∥y + ỹ

2

∥∥∥∥2

H
≤
∥∥∥∥y + ỹ

2

∥∥∥∥2

H
+
∥∥∥∥y − ỹ2

∥∥∥∥2

H
= 1

2‖y‖
2
H + 1

2‖ỹ‖
2
H = d2

and we conclude that all the inequalities are in fact identities which implies∥∥∥∥y − ỹ2

∥∥∥∥2

H
= 0.

Thus, y = ỹ and we have proven existence and uniqueness of y ∈ Q with ‖y‖H = d.
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