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7.1. Derivative operator on different spaces

(a) The operator <& : C*([0,1]) € €°([0,1]) — C°([0,1]) is not bounded. A coun-
terexample are the functions f,, € C*([0, 1]) for n € N given by f,(t) = t". Indeed,

n = max t" =1,
d n—1
-_ = t pu— n
||dtfn”00([071}) trg[%,}ﬁn n, I1f ||CO([0,1])

To check, whether the operator is closable, we consider a sequence (ug)ren of functions
up € C1([0,1]) such that [Juglgoqoyy — 0 as k — oo. Suppose, v € C°([0,1]) is a
limit of v := Suy in the sense that |jv — Ukl o(jo,1;) — 0. Does v = 0 follow? Yes, in
fact, for any ¢ € C2°(]0, 1[), integration by parts yields (the boundary terms vanish
due to ¢(0) =0 = (1))

‘/01 (t)p(t) | = ‘_/01 urlt)¢' (1) dt| < </01|(,0’(t)|dt>||uk||co([0,1]) SN

Since [[v — vkl o1y — O implies

/Olv(t)sa(t) dt:]}grolo/ol or(t)p(t) dt = 0

and since ¢ € C°(]0, 1) is arbitrary, we have v(t) = 0 for almost every ¢ € [0,1]. As
v is continuous, this implies v = 0 on [0, 1]. Therefore, the operator is closable.

(b) The operator &: C*([0,1]) c L*([0,1]) — L*([0,1]) is not bounded. A coun-

terexample are the functions g, € C'([0, 1]) for n € N given by g, (t) = e™. Indeed,

1
1 2 1
loullqony = ([ e at)" = o=, ;
9 7971
0 V2n _ &gnllezgony _

= 1 : L gnll 2
i "2 — L2([0,1])
15e9n 1 22 0,1 (/0 (ne™) dt> = 7

To check, whether the operator is closable, we consider a sequence (ug)ren of functions
ug, € C'([0,1]) such that [wkll 201y — 0 as k& — oo. Suppose, v € L3([0,1]) is a limit
of vy, := Ly, in the sense that [|v — Ukl 20,17 — 0- Does v = 0 follow? Yes, in fact,
for any ¢ € C2°(]0, 1) using Holder’s inequality, we have

1 1
[ et at] == [ e 0@t < lonll oy 19120y “= 0

Since ||v = vgl| 20,1y — 0 implies (for instance by continuity of the L?-scalar product)

[ etettydt = Jim [“opteyet e =0

and since p € C(]0, 1) is arbitrary, we have v = 0 in L?([0,1]). (For that we do not
care about the values at ¢ = 0 or ¢t = 1.) Therefore, the operator is closable.
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7.2. Complementing subspaces of finite dimension or codimension

(a) Let e,...,e, be a basis of the given finite-dimensional subspace U C X. For
i€ {l,...,n}, we define the linear functionals f;: U — R by

filej) =0y = {

Recall that by linearity, it suffices to define the functionals on a basis of U. Since U
is finite-dimensional, f; € L(U;R). From the Hahn-Banach Theorem follows (Satz
4.1.3) that there exist extensions F; € L(X;R) with || F;|| = || f;||. We define

P: X —>X
T zn:Fl(:v) e
i=1
Then, P is linear and also continuous, since
1Pl < (IRl ol

By construction, P(X) C span{el, ...,e,} = U. By definition of f; and F; we have
P(e;) = e; for every i € {1,...,n}. Therefore, P(X) = U. Finally, for every z € X,

(Po P)(x <ZF ):éFi(x) P(ei):iﬁ}(x)ei:P(:p).

From Problem 5.6 (a) then follows that U is topologically complemented.

1, ifi=j,

0, else.

(b) Recall that the quotient space X/U consists of equivalence classes which we
denote by [z] and comes with a canonical quotient map 7: X — X/U. Since
dim(X/U) = m < oo we can choose a basis [e],...,[e,] for X/U along with a
representative e; € X for each element [e;] of the basis. As in (a) we define linear
functionals f;: X/U — R for i € {1,...,m} by fi([ej]) = 0;;. Now, we just set
F;:= fiom: X — R in order to define

P: X=X

T iFi(a:)e

Since F(e;) = fi(n(e;)) = fi([e;]) = 0i;j we have Po P = P as in (a). Since

[e1], ..., [em] is a basis for X/U, the representatives ey,..., e, must be linearly
independent in X. Therefore, P(x) = 0 implies F;(x) = fi([x]) = 0 for every
i € {1,...,n} which in turn implies [z] = [0] or z € U. Conversely, z € U implies

7(x) = [0] and P(xz) = 0. Thus we have shown ker(P) = U. As in Problem 5.6 (a),
we conclude that (1 — P) is a continuous projection onto U which implies that U is
topologically complemented.
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7.3. Dense kernel

Given a normed space (X, ||-||y), the claim is that the linear map 0 # f: X — R is
not continuous if and only if ker(f) is dense in X.

“=" Suppose, f is not continuous. Then there exists a sequence (zy)ren in X, which
can be normed to ||zx||y = 1 by linearity of f, such that |f(z;)| = oo as k — oc.
Without loss of generality, we can assume f(xy) # 0 for every k € N. The goal is to
approximate any z € X by elements y; € ker(f). For each k € N we define

o=z ) =56 - A @) =0 = e k().
Indeed, the sequence (yx)ren approximates z in X because
B _ | f(®) _ G ke
Iz =l = 2o el = (7 A2 0

and we have shown that ker(f) is dense in X.

“«<” Conversely, we assume ker(f) = X and claim that f is not continuous. Since
we assume f # 0 there exists x € X with f(z) # 0. Since the kernel is dense, there
exists a sequence (zy)gen in ker(f) with ||z — z||y — 0 as kK — oco. But this violates

continuity: kh_}rgo flzg) =0# f(x).

7.4. Attaining the distance from the kernel

Given a normed space (X, ||-|| ), & continuous linear functional ¢: X — R with kernel
N :=ker(y) € X and a point zy € X \ N, the claim is equivalence of

(i) There exists yp € N with ||zg — yo||x = dist(zo, N) =: d,
(ii) There exists x1 € X with ||z1]|x = 1 and ||¢|| = |o(x1)].

The first isomorphism theorem states that the quotient space X /N is isomorphic to
the image of ¢. Since p(zg) # 0 and p(Azg) = Ap(xg) for every A € R, the image of ¢
is R which means that X/N is one-dimensional. Therefore, every element [z] € X/N
is of the form [z] = t[z(] with uniquely determined ¢ € R. This means that every
element z € X is of the form x = txy + y with uniquely determined t € R and y € N.

“(i) = (ii)” Let @1 = (29 — yo). Then |21y = 1. We hope that |¢(z1)| = [|¢[| and
start estimating

p(an)] = L g lo@L_

el T eex 2l
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Given any x € X, let t € R and y € N be as above. If t = 0, then ¢(z) = 0 is not
interesting. Therefore, we assume ¢t # 0 and observe

lo(x)] = |o(tzo + y)| = |@tdzr + tyo + y)| = [t|d |e(z1)],

2l x = lltzo +yllx = [tlllzwo + 1yllx = [t] inf lzo — gl = [t]d.
geEN

This implies that

|o(21)| [o(@)] _ [td | ()]
lo(1)] = < sup < = lp(a)].
lzullx ™ zex [lllx tld
Thus, the inequalities above are in fact identities and we conclude |p(z1)| = ||¢||-

“(ii) = (i)” As above, we have z1 = tzy + y; for uniquely determined ¢ € R and
y1 € N. In fact, t # 0 since |p(21)| = [|¢]| # 0. Therefore, zo = §(z1 — y1) and

1

|20 + %?Jle = H%fﬁlﬂx = m

In the following, we use the fact that any 2z € X satisfies the estimate

|o(2)] |o(2)]
el = = zlx = :
12l x el
Given any y € N, we have
lzo = yllx = 721 — t91 — yllx
|90<%$1 - %?Jl =yl el 1 1
= = = o+ 3ullx.
el tlllell 2] e
Since 1 1= —%yl € N we conclude that y attains dist(xg, V).

7.5. Not attaining the distance from the kernel

From problem 4.5 (a) we know that ¢: X — R is a continuous linear functioal.
Therefore N = ker(yp) is a closed subspace of X. From problem 4.5 (b) we know that
ll¢]| = 2. From problem 4.5 (c¢) we know that there does not exist any z; € X with
|z1]]x =1 and |¢(z1)| = 2 = ||¢||. From problem 7.4 we know that this is equivalent
to the statement that there does not exist any yo € N with ||zg — yo|| = dist(zo, N).
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7.6. Unique extension of functionals on Hilbert spaces

As a continuous linear operator f: Y C H — R is closable. Let f be its closure. We
claim that D(f) =Y. A priori, we only know D(f) C D(f) =Y. Therefore, we
consider y € Y together with a sequence (yx)gen in Y such that ||y — yx|l; — 0 as
k — oo. From

1F () = f(um)| < A FHyn = vl g,

we conclude that (f(yx))ken is a Cauchy-sequence in R. Thus, there exists z € R such
that f(yx) — z as k — oo. This means that (y, z) is in the closure of the graph of f
and we conclude y € D(f). Moreover, by continuity of the norm,

F)l = Jim [Fwo)l < T [ Fllolly = 17 00wle = 1T =11

The argument above shows that in order to extend f: Y — R, we can first uniquely
extend to f: Y — R without changing the norm and then extend to F': H — R with
the advantage that we can now work with the closed subspace Y. In fact, (Y, (-,)g)
is a Hilbert space! This allows us to apply the Riesz representation theorem: There
exists a unique h € Y such that for all y € Y

fw) = )
This suggests the extension

F:H—-R
'_><x7h)H

which satisfies ||F|| = ||2||; = ||| = || f]|- Ts this extension unique? If F: H — R is
another extension of f with || F'|| = || f|| then it must be also of the form F( )

for some h € H by the Riesz representation theorem. Is h = h? Since F Iy =
we have

= (a,h)y
f F|Y7
which implies h — h € Y. Since h € Y and ||h||,; = ||F|| = ||| = |||, we have

1allz = IRl = A = h+ Bl = IR = Rl + IAllg,

where we used (h — h) L h. This implies ||h — h||?, = 0. Therefore, F' is the unique
extension of f with || F|| = ||f||-
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7.7. Distance from convex sets in Hilbert spaces

Without loss of generality, we can assume x = 0. Otherwise we apply the translation
y — y — x which is an isometry to the entire space H.

(a) Let (z,)nen be a sequence in the convex set @ C H with ||z,| — d = dist(0, Q)
as n — oo. By convexity of @), the implications

Ty +
Ty Ty € Q = 2 " cQ =

) > dist(0,Q) =d

H

xn—i—me

hold for all n,m € N. The parallelogram identity “||z+y|*+||z—y|* = 2(||z|*+|ly||*)”
which is true in Hilbert spaces yields

2 2 2 2
2n =2l = 2ll2nlly + 2wy = llan + zmlly

2

xn—i_xm 2 2
44447HSMMNH+MMMM_4f'

2 2
= 2ol + 2Nl -4

From 2||z,||3, — 2d* as n — oo, we conclude that (2, )nex is a Cauchy-sequence in H.

(b) Now we assume that the convex set ) C H is closed. Let (z,)nen be a sequence
in @ with ||z,|; — d = dist(0,Q) as n — oo. According to (a), it must be a
Cauchy-sequence. Since H is complete, (x,),en converges to some y € H. In fact,
y € @ since (Q is closed.

Suppose there is another point § € ) with ||g|| = d. Then, again by convexity and
the parallelogram identity,

Y+ 2

2

2 +7|? y—y T2 L 2
£ <[* | = gllvll + 519 = &
< s 5 H‘f‘ 5 2||ZU||H+ 2||?J||H

H

and we conclude that all the inequalities are in fact identities which implies

Hy—§
2

2
=0.
H

Thus, y = ¢ and we have proven existence and uniqueness of y € Q with ||y||,; = d.
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