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9.1. Minkowski functional
Given the normed space (X, ‖·‖X), the non-trivial, open, convex subset Q ⊂ X and
the Minkowski functional

p : X → R
x 7→ inf{λ > 0 | 1

λ
x ∈ Q}

we define the set

Υ := {f ∈ X∗ | ∀x ∈ X : f(x) ≤ p(x)}

and claim that

Q =
⋂
f∈Υ
{x ∈ X | f(x) < 1}.

“⊆” Let x ∈ Q. Since Q is open, we have p(x) < 1. For every f ∈ Υ we have
f(x) ≤ p(x) by definition. This proves f(x) < 1 for every f ∈ Υ.

“⊇” Suppose x0 /∈ Q. We hope to find some f ∈ Υ with f(x0) ≥ 1. Towards that end,
we define the functional

` : span({x0})→ R
tx0 7→ t.

Since Q is convex and contains the origin, we have p(x0) ≥ 1. In particular, we have

∀t ≥ 0 : `(tx0) = t ≤ t p(x0) = p(tx0),
∀t < 0 : `(tx0) = t < 0 ≤ p(tx0).

The Hahn-Banach theorem implies that there exists a linear functional f : X → R
which agrees with ` on span({x0}) and satisfies f(x) ≤ p(x) for every x ∈ X. Is f
continuous? Since Q is open and contains the origin, there exists r > 0 such that
Br(0) ⊂ Q. Thus, 1

λ
x ∈ Q with λ = 2

r
‖x‖X and the definition of p implies that

f(x) ≤ p(x) ≤ 2
r
‖x‖X

which yields that f is continuous and therefore f ∈ Υ. Since f(x0) = 1, the claim
follows.
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9.2. Extremal points

(a) It is clear that the set E of extremal points of the closed, convex subset K ⊂ R2

must be a subset of the boundary ∂K of K because the center of every ball contained
in K is a convex combination of other points in this ball.

Let (yn)n∈N be a sequence in E which converges to some y ∈ K. Suppose y /∈ E. Then
there exist distinct points x1, x0 ∈ K and some 0 < λ < 1 such that λx1+(1−λ)x0 = y.
For any n ∈ N, the point yn is extremal and therefore cannot lie on the segment
between x1 and x0. Intuitively, the sequence (yn)n∈N must approach y from “above”
or “below” this segment. By restriction to a subsequence, we can assume that all yn
strictly lie on the same side of the the affine line through x1 and x2. By convexity
of K, the triangle D = conv{x1, x0, y1} is a subset of K. The arguments above and
convergence yn → y imply that for n ∈ N sufficiently large, yn is in the interior of D
and thus in the interior of K. This however contradicts yn ∈ E ⊂ ∂K. We conclude
y ∈ E which proves that E is closed.
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(b) The set of extremal points of a closed, convex subset in R3 is not necessarily
closed: Let S = {(x, y, 0) ∈ R3 | x2 +y2 = 1} and p± = (0, 1,±1). The set of extremal
points of conv(S∪{p+, p−}) is E = {p+, p−}∪S \p0, where p0 = (0, 1, 0) = 1

2p+ + 1
2p−.
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9.3. Extremal subsets

(a) LetK ⊂ X be convex andM ⊂ K an extremal subset ofK. Suppose,K\M is not
convex. Then there are points x1, x0 ∈ K \M such that x := λx1 +(1−λ)x0 /∈ K \M
for some 0 < λ < 1. Since K is convex, x ∈ K and hence x ∈ M . However, this
contradicts x1, x0 /∈M by definition of extremal subset.

(b) No, the interval K = [−1, 1] ⊂ R, the subset N = [−1, 0] ⊂ K and the
difference K \N = ]0, 1] are all convex but N is not an extremal subset of K since
1
2 · (−1) + 1

2 · 1 = 0 ∈ N but 1 /∈ N .

(c) If y ∈ K is an extremal point of K, then {y} ⊂ K is an extremal subset of K
and (a) implies that K \ {y} is convex. Conversely, if y ∈ K is not an extremal point
of K, then by definition there exist x1, x0 ∈ K \ {y} and some 0 < λ < 1 such that
y = λx1 + (1− λ)x0 which shows that K \ {y} is not convex.

9.4. Weak sequential continuity of linear operators
“(i)⇒ (ii)” Let (X, ‖·‖X) and (Y, ‖·‖Y ) be normed spaces. Let (xn)n∈N be a sequence
in X such that xn w

⇁ x for some x ∈ X. Let f ∈ Y ∗ be arbitrary. If T : X → Y is a
continuous linear operator, then f ◦ T ∈ X∗ and weak convergence of (xn)n∈N implies

lim
n→∞

f(Txn) = lim
n→∞

(f ◦ T )(xn) = (f ◦ T )(x) = f(Tx)

which proves weak convergence of (Txn)n∈N in Y .

“(ii) ⇒ (i)” If the linear operator T : X → Y is not continuous, then there exists
a sequence (xn)n∈N in X such that ‖xn‖X ≤ 1 and ‖Txn‖Y ≥ n2 for every n ∈ N.
Then 1

n
xn → 0 in X (in particular weakly) but (T ( 1

n
xn))n∈N is unbounded in Y and

therefore cannot be weakly convergent (Satz 4.6.1.).

9.5. Weak convergence in finite dimensions
Let e1, . . . , ed be a basis for the finite-dimensional normed space (X, ‖·‖X). Then, every
element x ∈ X is of the form x = ∑d

k=1 x
kek for uniquely determined x1, . . . , xd ∈ R

(upper indices, no exponents). For k ∈ {1, . . . , d} we consider the linear maps
e∗k : X → R given by e∗k(x) = xk. In fact, e∗k ∈ X∗ since |e∗k(x)| = |xk| ≤ ‖x‖1, where
‖x‖1 := ∑d

k=1|xk| defines a norm on X which must be equivalent to ‖·‖X since X is
finite-dimensional.

If (xn)n∈N is a sequence in X such that xn w
⇁ x for some x ∈ X as n→∞, then

∀k ∈ {1, . . . , d} : lim
n→∞

xkn = lim
n→∞

e∗k(xn) = e∗k(x) = xk.

This implies ‖xn − x‖1 → 0 and by equivalence of norms ‖xn − x‖X → 0 as n→∞.
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9.6. Weak convergence in Hilbert spaces

(a) Let (xn)n∈N be a sequence in the Hilbert space (H, (·, ·)H) such that xn w
⇁ x for

some x ∈ H and such that ‖xn‖H → ‖x‖H as n → ∞. Since (x, ·)H ∈ H∗, weak
convergence implies (x, xn)H → (x, x)H = ‖x‖2

H as n→∞ and we have

‖xn − x‖2
H = (xn − x, xn − x)H = ‖xn‖2

H − 2(x, xn)H + ‖x‖2
H

n→∞−−−→ 0.

(b) Let (xn)n∈N and (yn)n∈N be sequences in H and x, y ∈ H such that xn w
⇁ x and

‖yn − y‖H → 0 as n → ∞. Weak convergence xn w
⇁ x implies in particular, that

(xn, y)H → (x, y)H as n → ∞ and that there exists a finite constant C such that
‖xn‖H ≤ C for all n ∈ N. Thus,∣∣∣(xn, yn)H − (x, y)H

∣∣∣ =
∣∣∣(xn, yn − y)H + (xn, y)H − (x, y)H

∣∣∣
≤ C‖yn − y‖H +

∣∣∣(xn, y)H − (x, y)H
∣∣∣ n→∞−−−→ 0.

(c) Let (en)n∈N be an orthonormal system of the infinite-dimensional Hilbert space
(H, (·, ·)H). Then, Bessel’s inequality

∞∑
n=0
|(x, en)H |2 ≤ ‖x‖2

H

implies (x, en)H → 0 as n → ∞ for any x ∈ H. Since by the Riesz representation
theorem any f ∈ H∗ satisfies f(en) = (x, en)H for a unique x ∈ H, we obtain en w

⇁ 0.

(d) Let x ∈ H satisfy ‖x‖H ≤ 1. If x = 0, then any orthonormal system converges
weakly to x by (c). If x 6= 0, then an orthonormal system (en)n∈N of H with
e1 = ‖x‖−1

H x can be constructed via the Gram-Schmidt algorithm. For n ∈ N, let

xn := x+
(√

1− ‖x‖2
H

)
en+1

Then, since x ⊥ en+1, we have ‖xn‖2 = ‖x‖2
H + (1 − ‖x‖2

H) = 1 for every n ∈ N.
Moreover, xn w

⇁ x follows from en+1
w
⇁ 0 as n→∞ by (c).

(e) Let fn : [0, 2π]→ R be given by fn(t) = sin(nt) for n ∈ N. Then, (
√

1
π
fn)n∈N is

an orthonormal system of L2([0, 2π]), because∫ 2π

0
sin(mt) sin(nt) dt = 1

2

∫ 2π

0
cos
(
(m− n)t

)
− cos

(
(m+ n)t

)
dt

=

0, if m 6= n,

π, if m = n

holds for any m,n ∈ N. By (c) weak convergence fn w
⇁ 0 as n→∞ follows.
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