9.1. Minkowski functional

Given the normed space $(X, \|\cdot\|_X)$, the non-trivial, open, convex subset $Q \subset X$ and the Minkowski functional

$$p: X \to \mathbb{R}$$
$$x \mapsto \inf\{\lambda > 0 \mid \frac{1}{\lambda}x \in Q\}$$

we define the set

$$\Upsilon := \{ f \in X^* \mid \forall x \in X : f(x) \le p(x) \}$$

and claim that

$$Q = \bigcap_{f \in \Upsilon} \{ x \in X \mid f(x) < 1 \}.$$

"⊆" Let $x \in Q$. Since Q is open, we have p(x) < 1. For every $f \in \Upsilon$ we have $f(x) \le p(x)$ by definition. This proves f(x) < 1 for every $f \in \Upsilon$.

" \supseteq " Suppose $x_0 \notin Q$. We hope to find some $f \in \Upsilon$ with $f(x_0) \ge 1$. Towards that end, we define the functional

$$\ell \colon \operatorname{span}(\{x_0\}) \to \mathbb{R}$$
$$tx_0 \mapsto t.$$

Since Q is convex and contains the origin, we have $p(x_0) \ge 1$. In particular, we have

$$\forall t \ge 0 : \quad \ell(tx_0) = t \le t \, p(x_0) = p(tx_0), \\ \forall t < 0 : \quad \ell(tx_0) = t < 0 \le p(tx_0).$$

The Hahn-Banach theorem implies that there exists a linear functional $f: X \to \mathbb{R}$ which agrees with ℓ on span($\{x_0\}$) and satisfies $f(x) \leq p(x)$ for every $x \in X$. Is fcontinuous? Since Q is open and contains the origin, there exists r > 0 such that $B_r(0) \subset Q$. Thus, $\frac{1}{\lambda}x \in Q$ with $\lambda = \frac{2}{r} ||x||_X$ and the definition of p implies that

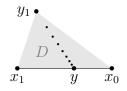
$$f(x) \le p(x) \le \frac{2}{r} \|x\|_X$$

which yields that f is continuous and therefore $f \in \Upsilon$. Since $f(x_0) = 1$, the claim follows.

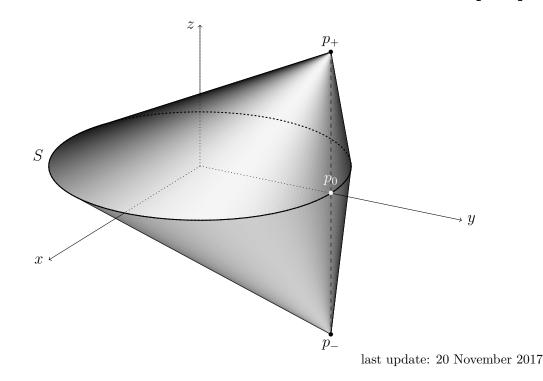
9.2. Extremal points

(a) It is clear that the set E of extremal points of the closed, convex subset $K \subset \mathbb{R}^2$ must be a subset of the boundary ∂K of K because the center of every ball contained in K is a convex combination of other points in this ball.

Let $(y_n)_{n\in\mathbb{N}}$ be a sequence in E which converges to some $y \in K$. Suppose $y \notin E$. Then there exist distinct points $x_1, x_0 \in K$ and some $0 < \lambda < 1$ such that $\lambda x_1 + (1-\lambda)x_0 = y$. For any $n \in \mathbb{N}$, the point y_n is extremal and therefore cannot lie on the segment between x_1 and x_0 . Intuitively, the sequence $(y_n)_{n\in\mathbb{N}}$ must approach y from "above" or "below" this segment. By restriction to a subsequence, we can assume that all y_n strictly lie on the same side of the the affine line through x_1 and x_2 . By convexity of K, the triangle $D = \operatorname{conv}\{x_1, x_0, y_1\}$ is a subset of K. The arguments above and convergence $y_n \to y$ imply that for $n \in \mathbb{N}$ sufficiently large, y_n is in the interior of Dand thus in the interior of K. This however contradicts $y_n \in E \subset \partial K$. We conclude $y \in E$ which proves that E is closed.



(b) The set of extremal points of a closed, convex subset in \mathbb{R}^3 is not necessarily closed: Let $S = \{(x, y, 0) \in \mathbb{R}^3 \mid x^2 + y^2 = 1\}$ and $p_{\pm} = (0, 1, \pm 1)$. The set of extremal points of conv $(S \cup \{p_+, p_-\})$ is $E = \{p_+, p_-\} \cup S \setminus p_0$, where $p_0 = (0, 1, 0) = \frac{1}{2}p_+ + \frac{1}{2}p_-$.



9.3. Extremal subsets

(a) Let $K \subset X$ be convex and $M \subset K$ an extremal subset of K. Suppose, $K \setminus M$ is not convex. Then there are points $x_1, x_0 \in K \setminus M$ such that $x := \lambda x_1 + (1 - \lambda) x_0 \notin K \setminus M$ for some $0 < \lambda < 1$. Since K is convex, $x \in K$ and hence $x \in M$. However, this contradicts $x_1, x_0 \notin M$ by definition of extremal subset.

(b) No, the interval $K = [-1,1] \subset \mathbb{R}$, the subset $N = [-1,0] \subset K$ and the difference $K \setminus N = [0,1]$ are all convex but N is not an extremal subset of K since $\frac{1}{2} \cdot (-1) + \frac{1}{2} \cdot 1 = 0 \in N$ but $1 \notin N$.

(c) If $y \in K$ is an extremal point of K, then $\{y\} \subset K$ is an extremal subset of K and (a) implies that $K \setminus \{y\}$ is convex. Conversely, if $y \in K$ is not an extremal point of K, then by definition there exist $x_1, x_0 \in K \setminus \{y\}$ and some $0 < \lambda < 1$ such that $y = \lambda x_1 + (1 - \lambda) x_0$ which shows that $K \setminus \{y\}$ is not convex.

9.4. Weak sequential continuity of linear operators

"(i) \Rightarrow (ii)" Let $(X, \|\cdot\|_X)$ and $(Y, \|\cdot\|_Y)$ be normed spaces. Let $(x_n)_{n \in \mathbb{N}}$ be a sequence in X such that $x_n \xrightarrow{w} x$ for some $x \in X$. Let $f \in Y^*$ be arbitrary. If $T: X \to Y$ is a continuous linear operator, then $f \circ T \in X^*$ and weak convergence of $(x_n)_{n \in \mathbb{N}}$ implies

$$\lim_{n \to \infty} f(Tx_n) = \lim_{n \to \infty} (f \circ T)(x_n) = (f \circ T)(x) = f(Tx)$$

which proves weak convergence of $(Tx_n)_{n \in \mathbb{N}}$ in Y.

"(ii) \Rightarrow (i)" If the linear operator $T: X \to Y$ is not continuous, then there exists a sequence $(x_n)_{n \in \mathbb{N}}$ in X such that $||x_n||_X \leq 1$ and $||Tx_n||_Y \geq n^2$ for every $n \in \mathbb{N}$. Then $\frac{1}{n}x_n \to 0$ in X (in particular weakly) but $(T(\frac{1}{n}x_n))_{n \in \mathbb{N}}$ is unbounded in Y and therefore cannot be weakly convergent (Satz 4.6.1.).

9.5. Weak convergence in finite dimensions

Let e_1, \ldots, e_d be a basis for the finite-dimensional normed space $(X, \|\cdot\|_X)$. Then, every element $x \in X$ is of the form $x = \sum_{k=1}^d x^k e_k$ for uniquely determined $x^1, \ldots, x^d \in \mathbb{R}$ (upper indices, no exponents). For $k \in \{1, \ldots, d\}$ we consider the linear maps $e_k^* \colon X \to \mathbb{R}$ given by $e_k^*(x) = x^k$. In fact, $e_k^* \in X^*$ since $|e_k^*(x)| = |x^k| \le ||x||_1$, where $||x||_1 \coloneqq \sum_{k=1}^d |x^k|$ defines a norm on X which must be equivalent to $\|\cdot\|_X$ since X is finite-dimensional.

If $(x_n)_{n\in\mathbb{N}}$ is a sequence in X such that $x_n \xrightarrow{w} x$ for some $x \in X$ as $n \to \infty$, then

$$\forall k \in \{1, \dots, d\}: \lim_{n \to \infty} x_n^k = \lim_{n \to \infty} e_k^*(x_n) = e_k^*(x) = x^k.$$

This implies $||x_n - x||_1 \to 0$ and by equivalence of norms $||x_n - x||_X \to 0$ as $n \to \infty$.

last update: 20 November 2017

3/4

9.6. Weak convergence in Hilbert spaces

(a) Let $(x_n)_{n\in\mathbb{N}}$ be a sequence in the Hilbert space $(H, (\cdot, \cdot)_H)$ such that $x_n \xrightarrow{w} x$ for some $x \in H$ and such that $||x_n||_H \to ||x||_H$ as $n \to \infty$. Since $(x, \cdot)_H \in H^*$, weak convergence implies $(x, x_n)_H \to (x, x)_H = ||x||_H^2$ as $n \to \infty$ and we have

$$\|x_n - x\|_H^2 = (x_n - x, x_n - x)_H = \|x_n\|_H^2 - 2(x, x_n)_H + \|x\|_H^2 \xrightarrow{n \to \infty} 0.$$

(b) Let $(x_n)_{n\in\mathbb{N}}$ and $(y_n)_{n\in\mathbb{N}}$ be sequences in H and $x, y \in H$ such that $x_n \xrightarrow{w} x$ and $\|y_n - y\|_H \to 0$ as $n \to \infty$. Weak convergence $x_n \xrightarrow{w} x$ implies in particular, that $(x_n, y)_H \to (x, y)_H$ as $n \to \infty$ and that there exists a finite constant C such that $\|x_n\|_H \leq C$ for all $n \in \mathbb{N}$. Thus,

$$|(x_n, y_n)_H - (x, y)_H| = |(x_n, y_n - y)_H + (x_n, y)_H - (x, y)_H| \leq C ||y_n - y||_H + |(x_n, y)_H - (x, y)_H| \xrightarrow{n \to \infty} 0.$$

(c) Let $(e_n)_{n \in \mathbb{N}}$ be an orthonormal system of the infinite-dimensional Hilbert space $(H, (\cdot, \cdot)_H)$. Then, Bessel's inequality

$$\sum_{n=0}^{\infty} |(x, e_n)_H|^2 \le ||x||_H^2$$

implies $(x, e_n)_H \to 0$ as $n \to \infty$ for any $x \in H$. Since by the Riesz representation theorem any $f \in H^*$ satisfies $f(e_n) = (x, e_n)_H$ for a unique $x \in H$, we obtain $e_n \stackrel{\text{w}}{\to} 0$.

(d) Let $x \in H$ satisfy $||x||_H \leq 1$. If x = 0, then any orthonormal system converges weakly to x by (c). If $x \neq 0$, then an orthonormal system $(e_n)_{n \in \mathbb{N}}$ of H with $e_1 = ||x||_H^{-1}x$ can be constructed via the Gram-Schmidt algorithm. For $n \in \mathbb{N}$, let

$$x_n := x + \left(\sqrt{1 - \|x\|_H^2}\right) e_{n+1}$$

Then, since $x \perp e_{n+1}$, we have $||x_n||^2 = ||x||_H^2 + (1 - ||x||_H^2) = 1$ for every $n \in \mathbb{N}$. Moreover, $x_n \stackrel{\text{w}}{\rightarrow} x$ follows from $e_{n+1} \stackrel{\text{w}}{\rightarrow} 0$ as $n \rightarrow \infty$ by (c).

(e) Let $f_n: [0, 2\pi] \to \mathbb{R}$ be given by $f_n(t) = \sin(nt)$ for $n \in \mathbb{N}$. Then, $(\sqrt{\frac{1}{\pi}} f_n)_{n \in \mathbb{N}}$ is an orthonormal system of $L^2([0, 2\pi])$, because

$$\int_0^{2\pi} \sin(mt) \sin(nt) dt = \frac{1}{2} \int_0^{2\pi} \cos\left((m-n)t\right) - \cos\left((m+n)t\right) dt$$
$$= \begin{cases} 0, \text{ if } m \neq n, \\ \pi, \text{ if } m = n \end{cases}$$

holds for any $m, n \in \mathbb{N}$. By (c) weak convergence $f_n \xrightarrow{w} 0$ as $n \to \infty$ follows.

last update: 20 November 2017

4/4