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10.1. Project: The weak topology is not metrizable

(a) Let (X, τ) be a metrizable topological space. Let d : X ×X → R be a metric
inducing the topology τ . Given x ∈ X, we consider

Bε(x) := {y ∈ X | d(x, y) < ε}, Bx := {B 1
n
(x) | n ∈ N}.

Let U be any neighbourhood of x. Since (X, τ) is metrizable, there exists ε > 0 such
that Bε(x) ⊂ U . Choosing N 3 n > 1

ε
, we have B 1

n
(x) ⊂ U , which shows that Bx is a

neighbourhood basis of x in (X, τ). Since x ∈ X is arbitrary and Bx countable, we
have verified the first axiom of countability for (X, τ).

(b) Let (X, ‖·‖X) be a normed space. Let τw be the weak topology on X. Let
U ⊂ X be any neighbourhood of 0 ∈ X in (X, τw). Then there exists Ω ∈ τw such
that 0 ∈ Ω ⊂ U . By definition of weak topology, Ω is an arbitrary union and finite
intersection of sets of the form f−1(I) for f ∈ X∗ and I ⊂ R open. In particular, Ω
contains a finite intersection of such sets containing the origin. More precisely, there
exist f1, . . . , fn ∈ X∗ and open sets I1, . . . , In ⊂ R such that

Ω ⊃
n⋂
k=1

f−1
k (Ik) 3 0.

By linearity fk(0) = 0 ∈ Ik for every k ∈ {1, . . . , n}. Since I1, . . . , In ⊂ R are open
and n finite, there exists ε > 0 such that (−ε, ε) ⊂ Ik for every k ∈ {1, . . . , n}. Thus,

Ω ⊃
n⋂
k=1

f−1
k

(
(−ε, ε)

)
= {x ∈ X | ∀k = 1, . . . , n : |fk(x)| < ε}

and we conclude that a neighbourhood basis of 0 ∈ X in (X, τw) is given by

B :=
{ n⋂
k=1

f−1
k

(
(−ε, ε)

) ∣∣∣∣ n ∈ N, f1, . . . , fn ∈ X∗, ε > 0
}
.

(c) Let f1, . . . , fn ∈ X∗ and f ∈ X∗ be given. Suppose,

f(x) = 0 ∀x ∈ N := {x ∈ X | f1(x) = . . . = fn(x) = 0} (∗)

Let the linear map ϕ : X → Rn be defined by

ϕ(x) =
(
f1(x), . . . , fn(x)

)
.

Assumption (∗) implies kerϕ ⊂ ker f . Let F : X/ kerϕ ∼= im(ϕ) ⊂ Rn → R be
defined by F ([x]) := f(x). This is well-defined since F ([x+ p]) = f(x) + f(p) = f(x)
for every p ∈ kerϕ ⊂ ker f . Defining F to be zero on the orthogonal complement of
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im(ϕ) ⊂ Rn, we obtain a linear map F : Rn → R satisfying f = F ◦ ϕ. By the Riesz
representation theorem on Rn we have F (y1, . . . , yn) = λ1y1 + . . . + λnyn for some
(λ1, . . . , λn) ∈ Rn. This implies

f(x) = F (ϕ(x)) = λ1f1(x) + . . .+ λnfn(x).

Conversely, if f is a linear combination of {f1, . . . , fn}, then f(x) = 0 for every x ∈ N .

(d) Let (X, ‖·‖X) be a normed space and suppose that (X, τw) is first countable.
Then there exists a countable neighbourhood basis {Aα}α∈N of 0 ∈ X in (X, τw).
Since B defined in (b) is also a neighbourhood basis of 0 ∈ X in (X, τw), we have

∀α ∈ N ∃Bα ∈ B : Bα ⊂ Aα.

By construction of B, this means that

∀α ∈ N ∃nα ∈ N, fα1 , . . . , fαnα ∈ X
∗, εα > 0 :

Bα := {x ∈ X | ∀k = 1, . . . , nα : |fαk (x)| < εα} ⊂ Aα.

We claim that every f ∈ X∗ is a finite linear combination of elements in the set

Υ :=
⋃
α∈N
{fαk | k = 1, . . . , nα}.

Let f ∈ X∗. Then, {x ∈ X | |f(x)| < 1} is a neighbourhood of 0 ∈ X in (X, τw).
Consequently, there exists α ∈ N such that Aα ⊂ {x ∈ X | |f(x)| < 1}. Then, for
every m > 0 by linearity

{x ∈ X | ∀k = 1, . . . , nα : |fαk (x)| < 1
m
εα}

= 1
m
Bα ⊂ 1

m
Aα ⊂ { 1

m
x ∈ X | |f(x)| < 1} = {x ∈ X | |f(x)| < 1

m
}.

Taking the intersection over all m ∈ N, we obtain

{x ∈ X | ∀k = 1, . . . , nα : fαk (x) = 0} ⊂ {x ∈ X | f(x) = 0}.

According to part (c), this implies that f is a linear combination of {fα1 , . . . , fαnα}
which is a finite subset of Υ. Since Υ ⊂ X∗ is at most countable, an algebraic basis
for X∗ is at most countable.

(e) Suppose (X, τw) is metrizable. Then (X, τw) satisfies the first axiom of countability
according to part (a). According to part (d), an algebraic basis for X∗ is at most
countable. However, (X∗, ‖·‖X∗) is always complete because R is complete (Beispiel
2.1.1). In problem 4.1 (a) we applied the Baire Lemma to show that an algebraic
basis of a complete space is either finite or uncountable. If the algebraic basis of X∗
is finite, then ∞ > dimX∗ = dimX∗∗ ≥ dimX which contradicts our assumption.
Therefore (X, τw) can not be metrizable.
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10.2. Sequential closure

(a) Let (X, τ) be a topological space and let A ⊂ X be closed. Let (xn)n∈N be a
sequence in A such that xn τ−→ x as n→∞ for some x ∈ X. Suppose x /∈ A. Then,
U := X \ A is an open set in τ containing x. Convergence xn τ−→ x implies that there
exists N ∈ N such that xN ∈ U . This however contradicts xN ∈ A. Thus, x ∈ A and
we have proven that A is sequentially closed.

Similarly, if Ω ⊂ X is any subset and x ∈ Ωτ -seq, then there exists a sequence
(xn)n∈N in Ω such that xn τ−→ x. If x /∈ Ωτ , then U := X \ Ωτ is an open set in τ
containing x. Convergence xn τ−→ x implies that there exists N ∈ N such that xN ∈ U
in contradiction to xN ∈ Ω ⊂ Ωτ . Thus, x ∈ Ωτ and the inclusion Ωτ -seq ⊂ Ωτ follows.

(b) In the following, we construct a set Ω ⊂ `2 such that (0) ∈ Ωw but no sequence
in Ω converges weakly to zero: (0) /∈ Ωw-seq. (Here we denote (0) := (0, 0, . . .) ∈ `2.)

For n ∈ N and 2 ≤ m ∈ N, let x(n,m) = ( 1
n
, 0, . . . , 0, n, 0, . . .) ∈ `2, where the entry “n”

is at m-th position. By the Riesz representation theorem, any f ∈ (`2)∗ is of the form
f = (·, y)`2 for some y ∈ `2. For any y ∈ `2 and any 2 ≤ m,n ∈ N, we have

(x(n,m), y)`2 = 1
n
y1 + nym. (∗)

Let Ω = {x(n,m) | n,m ∈ N, m ≥ 2}. Let (x(nk,mk))k∈N be any (fixed) sequence in Ω.
Towards a contradiction, suppose x(nk,mk) w

⇁ (0) as k → ∞. From (∗) we conclude
nk →∞ and mk →∞ as k →∞. (Note that for y ∈ `2 we have ym → 0 as m→∞.)
But then ‖x(nk,mk)‖2

`2 = n−2
k + n2

k →∞ as k →∞ and we derived a contradiction to
the fact, that (x(nk,mk))k∈N being a weakly convergent sequence must be bounded.

Suppose, (0) /∈ Ωw. Then there exists a weak neighbourhood V of (0) ∈ `2 such that
V ⊂ `2 \ Ωw. By definition of weak topology, there exist finitely many open sets
U1, . . . , Ur ⊂ R and elements y(1), . . . , y(r) ∈ `2, where y(k) = (y(k)

j )j∈N such that

V ⊃
r⋂

k=1
{x ∈ `2 | (x, y(k))`2 ∈ Uk} 3 (0).

In particular we have 0 ∈ Uk for every k ∈ {1, . . . , r}. Since every Uk is open and r
finite, there exists ε > 0 such that (−ε, ε) ⊂ Uk for every k ∈ {1, . . . , r}. However,
if we fix n ∈ N such that 1

n
|y(k)

1 | < ε
2 and then choose 2 ≤ m ∈ N large enough such

that n|y(k)
m | < ε

2 for each of the finitely many k ∈ {1, . . . , r}, we have

|(x(n,m), y(k))`2 | ≤ 1
n
|y(k)

1 |+ n|y(k)
m | < ε ∀k ∈ {1, . . . , r}

which implies x(n,m) ∈ V . As x(n,m) ∈ Ω, a contradiction to the definition of V arises.
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10.3. Convex hull

(a) Given the normed space (X, ‖·‖X) and the subset A ⊂ X, let

C :=
{ n∑
k=1

λkxk

∣∣∣∣ n ∈ N, x1, . . . , xn ∈ A, λ1, . . . , λn ≥ 0,
n∑
k=1

λk = 1
}
.

We prove conv(A) = C by showing the two inclusions.

“⊆” Since A ⊂ C, the inclusion conv(A) ⊆ C follows from the definition of convex hull,
if we show that C is convex. In fact, given 0 < t < 1 we have

t
n∑
k=1

λkxk + (1− t)
m∑
k=1

λ′kx
′
k =

n+m∑
k=1

µkyk

with

0 ≤ µk :=

tλk if k ∈ {1, . . . , n},
(1− t)λ′k−n if k ∈ {n+ 1, . . . , n+m}

A 3 yk :=

xk if k ∈ {1, . . . , n},
x′k−n if k ∈ {n+ 1, . . . , n+m}

and µ1 + . . .+ µn+m = t(λ1 + . . .+ λn) + (1− t)(λ′1 + . . .+ λ′m) = t+ (1− t) = 1.

“⊇” Let x1, . . . , xn ∈ A and let λ1, . . . , λn ≥ 0 with λ1 + . . .+ λn = 1. We can assume
λ1 6= 0. Since conv(A) is convex and contains x1, x2 ∈ A, and since λ1

λ1+λ2
+ λ2

λ1+λ2
= 1,

conv(A) 3 λ1

λ1 + λ2
x1 + λ2

λ1 + λ2
x2 = λ1x1 + λ2x2

λ1 + λ2
=: y2.

For the same reason,

conv(A) 3 λ1 + λ2

λ1 + λ2 + λ3
y2 + λ3

λ1 + λ2 + λ3
x3 = λ1x2 + λ2x2 + λ3x3

λ1 + λ2 + λ3
=: y3.

Iterating this procedure, we obtain

conv(A) 3 λ1 + . . .+ λk−1

λ1 + . . .+ λk
yk−1 + λk

λ1 + . . .+ λk
xk = λ1x1 + . . .+ λkxk

λ1 + . . .+ λk
=: yk.

for every k ∈ {3, . . . , n}. Since λ1 + . . . + λn = 1, we have yn = λ1x1 + . . . + λnxn
which concludes the proof of conv(A) ⊇ C.
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(b) Let (xk)k∈N be a sequence in X and let x ∈ X such that xk w
⇁ x as k →∞. Let

K := conv({xk | k ∈ N}). In general, K ⊂ K ⊂ Kw-seq ⊂ Kw but since K is convex,
the closure K with respect to ‖·‖X agrees with the closure Kw with respect to the
weak topology: K = Kw. Therefore, the assumption that x is in the weak-sequential
closure Kw-seq 3 x implies x ∈ K and there exists a sequence (yn)n∈N in K such that
‖yn − x‖X → 0 as n → ∞. By (a), each element yn ∈ K must be a convex linear
combination of finitely many elements of {xk | k ∈ N}.

(c) Given the normed space (X, ‖·‖X), the convex subsets A,B ⊂ X and defining
4 := {(s, t) ∈ R2 | s+ t = 1, s, t ≥ 0}, we claim that

conv(A ∪B) = D :=
⋃

(s,t)∈4
(sA+ tB)

“⊆” By choosing (s, t) = (1, 0) we see A ⊂ D. Analogously, B ⊂ D, hence A∪B ⊂ D.
If x ∈ (conv(A ∪B)) \ (A ∪B), then (a) implies that x is of the form

x =
j∑

k=1
skak +

n∑
k=j+1

tkbk,

where j, n ∈ N, where ak ∈ A and bk ∈ B as well as sk, tk ≥ 0 for every k and where
s1 + . . .+ sj + tj+1 + . . .+ tn = 1. Since x /∈ A ∪B by assumption, we have

s :=
j∑

k=1
sk > 0, t :=

n∑
k=j+1

tk > 0,

with s+ t = 1. Since A and B are both convex by assumption,

a := 1
s

j∑
k=1

skak ∈ A, b := 1
t

n∑
k=j+1

tkbk ∈ B,

and we have shown x = sa+ tb ∈ D.

“⊇” Let a ∈ A and b ∈ B. Then a, b ∈ conv(A∪B). Since conv(A∪B) is convex, we
must have sa+ tb ∈ conv(A ∪B) for every (s, t) ∈ 4. This proves conv(A ∪B) ⊇ D.

Under the assumption that the convex sets A and B are compact, we show now that
D =

⋃
(s,t)∈4

(sA+ tB)

is compact. Let (xn)n∈N be a sequence in D. Then there exist an ∈ A and bn ∈ B as
well as (sn, tn) ∈ 4 such that xn = snan + tnbn for every n ∈ N. We argue in 3 steps:

• Since 4 is compact in R2, a subsequence ((sn, tn))n∈Λ1⊂N converges in 4.
• Since A is compact in X, a subsequence (an)n∈Λ2⊂Λ1 converges in A.
• Since B is compact in X, a subsequence (bn)n∈Λ3⊂Λ2 converges in B.

Therefore, the subsequence (xn)n∈Λ3 converges in D which concludes the proof.

last update: 26 November 2017 5/7



ETH Zürich
Autumn 2017

Functional Analysis I
Solution to Problem Set 10

d-math
Prof. A. Carlotto

10.4. Non-compactness

(a) Given n ∈ N, we divide the interval [0, 1] into 2n subintervals I1, . . . , I2n of equal
length, and define the function fn : [0, 1]→ R on each Ik to be −1

2 if k is odd and +1
2

if k is even. More precisely,

fn(x) =

−
1
2 , if ∃k ∈ N : 2nx ∈ [2k − 2, 2k − 1[
1
2 , else.

x

f1

+

+1
2

+−1
2

+
1

x

f2

+

+1
2

+−1
2

+
1

x

f3

+

+1
2

+−1
2

+
1

By construction, ‖fn‖Lp([0,1]) = 1
2 for every n ∈ N and every 1 ≤ p ≤ ∞. Therefore,

the sequence (fn)n∈N is bounded in Lp([0, 1]). However by construction, for any pair
n,m ∈ N with n 6= m the difference |fn − fm| is the characteristic function of a union
of subintervals whose lengths sum up to 1

2 . In particular, ‖fn − fm‖Lp([0,1]) = (1
2)

1
p

for 1 ≤ p < ∞ and ‖fn − fm‖L∞([0,1]) = 1. Consequently, (fn)n∈N cannot have any
convergent subsequence.

(b) Given n ∈ N, let en ∈ c0 be given by en = (0, . . . , 0, 1, 0, . . .), where the 1 is at
n-th position. Then the sequence (en)n∈N is bounded in (c0, ‖·‖`∞) since ‖en‖`∞ = 1
for every n ∈ N. However, for any pair n,m ∈ N with n 6= m we have ‖en−em‖`∞ = 1.
Consequently, (en)n∈N cannot have any convergent subsequence.

10.5. Separability
The claim is equivalence of the following statements.

(i) The normed space (X, ‖·‖X) is separable.

(ii) B = {x ∈ X | ‖x‖X ≤ 1} is separable.

(iii) S = {x ∈ X | ‖x‖X = 1} is separable.

Since subsets of separable sets are separable (Satz 5.2.1), the inclusions S ⊂ B ⊂ X
already yield (i)⇒ (ii)⇒ (iii).
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“(iii)⇒ (i)” By assumption, there exists a countable dense subset D ⊂ S. Moreover,
as countable union of countable sets,

E :=
⋃
q∈Q

qD = {qd ∈ X | q ∈ Q, d ∈ D}

is countable. We claim is that E ⊂ X is dense. Let x ∈ X and ε > 0 be arbitrary.
Since 0 ∈ E, we may assume x 6= 0 and consider the element x

‖x‖X
∈ S. Since D ⊂ S

is dense, there exists d ∈ D such that∥∥∥d− x
‖x‖X

∥∥∥
X
<

ε

2‖x‖X
.

Moreover, since ‖x‖X ∈ R and since Q is dense in R, there exists q ∈ Q such that∣∣∣q − ‖x‖X ∣∣∣ < ε

2 .

Using D ⊂ S ⇒ ‖d‖X = 1 and combining the inequalities, the point qd ∈ E satisfies

‖qd− x‖X =
∥∥∥(q − ‖x‖X)d+ ‖x‖Xd− x

∥∥∥
X

≤
∣∣∣q − ‖x‖X ∣∣∣+ ∥∥∥‖x‖Xd− x∥∥∥X <

ε

2 + ε‖x‖X
2‖x‖X

= ε,

which proves that E ⊂ X is dense. Since E is countable, we have shown that X is
separable.
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