12.1. Integral operators

(a) Let $f \in L^2(\Omega)$. Then Hölder's inequality and Fubini's theorem imply

$$\int_{\Omega} |(Kf)(x)|^2 dx = \int_{\Omega} \left| \int_{\Omega} k(x,y) f(y) dy \right|^2 dx \le \int_{\Omega} \left(\int_{\Omega} |k(x,y) f(y)| dy \right)^2 dx$$

$$\le \int_{\Omega} \left(\int_{\Omega} |k(x,y)|^2 dy \right) ||f||_{L^2(\Omega)}^2 dx = ||k||_{L^2(\Omega \times \Omega)}^2 ||f||_{L^2(\Omega)}^2.$$

Since $k \in L^2(\Omega \times \Omega)$ by assumption, $||Kf||_{L^2(\Omega)} \le ||k||_{L^2(\Omega \times \Omega)} ||f||_{L^2(\Omega)} < \infty$ follows.

(b) Since the space $L^2(\Omega)$ is reflexive (which follows from being a Hilbert space), problem 11.4 (e) implies that $K: L^2(\Omega) \to L^2(\Omega)$ is a compact operator, if K maps weakly convergent sequences to norm-convergent sequences.

Let $(f_n)_{n\in\mathbb{N}}$ be sequence in $L^2(\Omega)$ such that $f_n \stackrel{\text{w}}{\to} f$ as $n \to \infty$ for some $f \in L^2(\Omega)$. Since $k \in L^2(\Omega \times \Omega)$, Fubini's theorem implies that $k(x, \cdot) \in L^2(\Omega)$ for almost every $x \in \Omega$. Weak convergence therefore implies

$$(Kf_n)(x) = \left\langle k(x,\cdot), f_n \right\rangle_{L^2(\Omega)} \xrightarrow{n \to \infty} \left\langle k(x,\cdot), f \right\rangle_{L^2(\Omega)} = (Kf)(x)$$

for almost every $x \in \Omega$. As weakly convergent sequence, $(f_n)_{n \in \mathbb{N}}$ is bounded: there exists $C \in \mathbb{R}$ such that $||f_n||_{L^2(\Omega)} \leq C$ for every $n \in \mathbb{N}$. By Hölder's inequality,

$$|(Kf_n)(x)| \le \int_{\Omega} |k(x,y)f_n(y)| \, dy \le ||k(x,\cdot)||_{L^2(\Omega)} ||f_n||_{L^2(\Omega)} \le C||k(x,\cdot)||_{L^2(\Omega)}.$$

The assumption $k \in L^2(\Omega \times \Omega)$ and Fubini's theorem imply that the function $x \mapsto C \|k(x,\cdot)\|_{L^2(\Omega)}$ is in $L^2(\Omega)$. Thus, $(Kf_n)(x)$ is dominated by a function in $L^2(\Omega)$. Since $(Kf_n)(x)$ converges pointwise for almost every $x \in \Omega$ to a function in $L^2(\Omega)$, the dominated convergence theorem implies L^2 -convergence $\|Kf_n - Kf\|_{L^2(\Omega)} \to 0$.

12.2. Uniform subconvergence

For every $n \in \mathbb{N}$ and $x \in [0,1]$, the assumptions $f'_n(0) = f_n(0)$ and $|f'_n(t)| \leq C$ imply

$$|f_n(x)| \le |f_n(0)| + \int_0^x |f_n'(t)| dt = |f_n'(0)| + \int_0^x |f_n'(t)| dt \le C + xC \le 2C.$$

Consequently, $(f_n)_{n\in\mathbb{N}}$ is uniformly bounded in $C^0([0,1])$. It is also equicontinuous:

$$|f_n(x) - f_n(y)| = \left| \int_y^x f_n'(t) dt \right| \le C|x - y|,$$

hence $|f_n(x) - f_n(y)| < \varepsilon$ whenever $|x - y| < \delta := \frac{\varepsilon}{2C}$. By the Arzelà–Ascoli theorem, $(f_n)_{n \in \mathbb{N}}$ has a uniformly convergent subsequence.

12.3. Multiplication operators on complex-valued sequences

(a) Given $a \in \ell_{\mathbb{C}}^{\infty}$, let $(Tx)_n = a_n x_n$ for $x \in \ell_{\mathbb{C}}^2$. We obtain $||T|| \leq ||a||_{\ell_{\infty}^{\infty}}$ from

$$||Tx||_{\ell_{\mathbb{C}}^2}^2 = \sum_{n \in \mathbb{N}} |a_n x_n|^2 \le ||a||_{\ell_{\mathbb{C}}^\infty}^2 ||x||_{\ell_{\mathbb{C}}^2}^2.$$

Given any $k \in \mathbb{N}$ let $e_k = (0, \dots, 0, 1, 0, \dots) \in \ell_{\mathbb{C}}^2$, where the 1 is at k-th position. Then, $\|Te_k\|_{\ell_{\mathbb{C}}^2} = |a_k| = |a_k| \|e_k\|_{\ell_{\mathbb{C}}^2}$ implies $\|T\| \ge |a_k|$. Since $k \in \mathbb{N}$ is arbitrary, $\|T\| \ge \|a\|_{\ell_{\mathbb{C}}^\infty}$ follows. To conclude, $\|T\| = \|a\|_{\ell_{\mathbb{C}}^\infty}$.

(b) The adjoint operator T^* of T is given by $(T^*y)_n = \overline{a_n}y_n$ for $y \in \ell^2_{\mathbb{C}}$ because

$$\forall x, y \in \ell_{\mathbb{C}}^2 \qquad (x, T^*y)_{\ell_{\mathbb{C}}^2} = (Tx, y)_{\ell_{\mathbb{C}}^2} = \sum_{n \in \mathbb{N}} a_n x_n \overline{y_n} = \sum_{n \in \mathbb{N}} x_n \overline{a_n} \overline{y_n}.$$

and we conclude $T = T^* \Leftrightarrow a_n = \overline{a_n} \ \forall n \in \mathbb{N}$.

(c) Let $T \in L(\ell_{\mathbb{C}}^2, \ell_{\mathbb{C}}^2)$ and $e_k \in \ell_{\mathbb{C}}^2$ be as in (a). Being an orthonormal system of the Hilbert space $\ell_{\mathbb{C}}^2$, the sequence $(e_n)_{n \in \mathbb{N}}$ converges weakly to zero. If T is a compact operator, then $|a_n| = ||Te_n||_{\ell_{\mathbb{C}}^2} \to 0$ as $n \to \infty$.

Conversely, let $(a_n)_{n\in\mathbb{N}}$ be a sequence in \mathbb{C} such that $a_n \to 0$ as $n \to \infty$ and let $T \in L(\ell^2_{\mathbb{C}}, \ell^2_{\mathbb{C}})$ be the corresponding multiplication operator. Let $(x^{(k)})_{k\in\mathbb{N}}$ be any bounded sequence in $\ell^2_{\mathbb{C}}$ and C > 0 a constant such that $\|x^{(k)}\|_{\ell^2_{\mathbb{C}}} \leq C$ for every $k \in \mathbb{N}$. Since $\ell^2_{\mathbb{C}}$ is reflexive, there exists $x \in \ell^2_{\mathbb{C}}$ and an unbounded subset $\Lambda \subset \mathbb{N}$ such that $x^{(k)} \stackrel{\text{w}}{\to} x$ as $\Lambda \ni k \to \infty$. In particular,

$$\lim_{\Lambda \ni k \to \infty} x_n^{(k)} = \lim_{\Lambda \ni k \to \infty} (e_n, x^{(k)})_{\ell_{\mathbb{C}}^2} = (e_n, x)_{\ell_{\mathbb{C}}^2} = x_n. \tag{*}$$

Moreover, since $B_C(0; \ell_{\mathbb{C}}^2)$ is weakly closed, $||x||_{\ell_{\mathbb{C}}^2} \leq C$. Let $\varepsilon > 0$. By assumption, there exists $N \in \mathbb{N}$ such that $|a_n|^2 < \frac{\varepsilon}{4C}$ for all $n \geq N$. Assuming $a \not\equiv 0$, let $K \in \Lambda$ such that for all $\Lambda \ni k \geq K$ and each of the finitely many $n \in \{1, \ldots, N\}$ there holds

$$|x_n^{(k)} - x_n|^2 < \frac{\varepsilon}{2N||a||_{\ell_{\infty}^{\infty}}^2}.$$

This is possible due to (*). Then, for all $\Lambda \ni k \geq K$

$$||Tx^{(k)} - Tx||_{\ell_{\mathbb{C}}^{2}}^{2} = \sum_{n=1}^{N} |a_{n}(x_{n}^{(k)} - x_{n})|^{2} + \sum_{n=N+1}^{\infty} |a_{n}(x_{n}^{(k)} - x_{n})|^{2}$$

$$< \sum_{n=1}^{N} \frac{|a_{n}|^{2} \varepsilon}{2N ||a||_{\ell_{\mathbb{C}}^{\infty}}^{2}} + \frac{\varepsilon}{4C} \sum_{n \in \mathbb{N}} (|x_{n}^{(k)}|^{2} + |x_{n}|^{2}) \le \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Thus, $(Tx^{(k)})_{k\in\Lambda}$ converges in $\ell^2_{\mathbb{C}}$ which proves that T is a compact operator.

12.4. A compact operator on continuous functions

Given a < b, let $T: C^0([a,b]) \to C^0([a,b])$ be the linear operator defined by

$$(Tf)(x) = \int_a^x \frac{f(t)}{\sqrt{x-t}} dt.$$

(a) For every $x \in [a, b]$ and any $f \in C^0([a, b])$ there holds

$$\int_{a}^{x} \frac{1}{\sqrt{x-t}} dt = \left[-2\sqrt{x-t} \right]_{t=a}^{x} = 2\sqrt{x-a},$$
$$|(Tf)(x)| \le \int_{a}^{x} \frac{|f(t)|}{\sqrt{x-t}} dt \le 2\sqrt{x-a} ||f||_{C^{0}([a,b])}.$$

Therefore, $||Tf||_{C^0([a,b])} \leq 2\sqrt{b-a}||f||_{C^0([a,b])}$ and $||T|| \leq 2\sqrt{b-a}$. In fact, choosing a constant function f, we obtain $||T|| = 2\sqrt{b-a}$.

(b) Let $(f_n)_{n\in\mathbb{N}}$ be a bounded sequence in $C^0([a,b])$ and let C>0 be a constant such that $||f_n||_{C^0([a,b])} \leq C$ for all $n \in \mathbb{N}$. Then the sequence $(Tf_n)_{n\in\mathbb{N}}$ is also (uniformly) bounded in $C^0([a,b])$ since

$$||Tf_n||_{C^0([a,b])} \le ||T|| ||f_n||_{C^0([a,b])} \le 2C\sqrt{b-a}$$

by part (a). To show equicontinuity, we consider $a \le x \le y \le b$ and estimate

$$|(Tf_n)(y) - (Tf_n)(x)| = \left| \int_a^y \frac{f_n(t)}{\sqrt{y - t}} dt - \int_a^x \frac{f_n(t)}{\sqrt{x - t}} dt \right|$$

$$= \left| \int_x^y \frac{f_n(t)}{\sqrt{y - t}} dt - \int_a^x \left(\frac{f_n(t)}{\sqrt{x - t}} - \frac{f_n(t)}{\sqrt{y - t}} \right) dt \right|$$

$$\leq \int_x^y \frac{|f_n(t)|}{\sqrt{y - t}} dt + \int_a^x |f_n(t)| \left(\frac{1}{\sqrt{x - t}} - \frac{1}{\sqrt{y - t}} \right) dt$$

$$\leq C \left(\int_x^y \frac{1}{\sqrt{y - t}} dt + \int_a^x \left(\frac{1}{\sqrt{x - t}} - \frac{1}{\sqrt{y - t}} \right) dt \right)$$

$$\leq 2C \left(\sqrt{y - x} + \sqrt{x - a} - \sqrt{y - a} + \sqrt{y - x} \right)$$

$$\leq 4C\sqrt{y - x}.$$

Hence, $|(Tf_n)(y) - (Tf_n)(x)| < \varepsilon$ whenever $|y - x| < \delta := \frac{\varepsilon^2}{16C^2}$. By the Arzelà–Ascoli theorem, $(Tf_n)_{n \in \mathbb{N}}$ has a uniformly convergent subsequence, which proves that T is a compact operator.

(c) In part (a) we computed the operator norm $||T|| = 2\sqrt{b-a}$. By definition,

$$r_T := \inf_{n \in \mathbb{N}} ||T^n||^{\frac{1}{n}} \le ||T|| = 2\sqrt{b-a}.$$

12.5. A multiplication operator on square-integrable functions

Given $-\infty < a \le 0 \le b < \infty$, let $T: L^2([a,b];\mathbb{C}) \to L^2([a,b];\mathbb{C})$ be the linear operator defined by

$$(Tf)(x) = x^2 f(x).$$

(a) For every $f \in L^2([a,b];\mathbb{C})$, there holds

$$||Tf||_{L^{2}([a,b];\mathbb{C})}^{2} = \int_{a}^{b} x^{4} |f(x)|^{2} dx \le \left(\max_{x \in [a,b]} x^{4}\right) ||f||_{L^{2}([a,b];\mathbb{C})}^{2}$$

$$\Rightarrow ||T|| \le \max\{a^{2}, b^{2}\}.$$

Suppose b > 0. Let $0 < \varepsilon < b$ and let $f_{\varepsilon} = \varepsilon^{-\frac{1}{2}} \chi_{[b-\varepsilon,b]}$, where $\chi_{[b-\varepsilon,b]}$ denotes the characteristic function of the interval $[b-\varepsilon,b] \subset [a,b]$. Then,

$$||Tf_{\varepsilon}||_{L^{2}([a,b];\mathbb{C})}^{2} = \int_{b-\varepsilon}^{b} x^{4} |f_{\varepsilon}(x)|^{2} dx \ge (b-\varepsilon)^{4} ||f_{\varepsilon}||_{L^{2}([a,b];\mathbb{C})}^{2}.$$

Since $\varepsilon > 0$ is arbitrary, we obtain $||T|| \ge b^2$. Analogously, we can prove $||T|| \ge a^2$ under the assumption a < 0. In total, we obtain $||T|| = \max\{a^2, b^2\}$.

(b) Suppose $\lambda \in \mathbb{C}$ and $f \in L^2([a,b];\mathbb{C})$ satisfy $Tf = \lambda f$. For almost every $x \in [a,b]$,

$$0 = (\lambda f - Tf)(x) = (\lambda - x^2)f(x).$$

From $\lambda - x^2 \neq 0$ for almost all $x \in [a, b]$ we conclude f(x) = 0 for almost all $x \in [a, b]$. Hence, f = 0 in $L^2([a, b]; \mathbb{C})$ which proves that the operator T has no eigenvalues.

(c) In part (b) we prove that the operator $(\lambda - T)$ is injective for any $\lambda \in \mathbb{C}$. If the operator $(\lambda - T)$ were surjective, there would exist $f \in L^2([a, b]; \mathbb{C})$ with $\lambda f - Tf = 1$. Then, for almost every $x \in [a, b]$,

$$1 = \lambda f(x) - Tf(x) = (\lambda - x^2)f(x) \qquad \Rightarrow f(x) = \frac{1}{\lambda - x^2}.$$

If $0 \le \lambda \in \mathbb{R}$ and if $a \le -\sqrt{\lambda}$ or $\sqrt{\lambda} \le b$, then $f \notin L^2([a,b])$ in contradiction to our assumption because of the singularity at $x \in [a,b]$ satisfying $x^2 = \lambda$. Therefore, $(\lambda - T)$ is not surjective for $\lambda \in [0, \max\{a^2, b^2\}]$ which shows $[0, ||T||] \subset \sigma(T)$.

If $\lambda \in \mathbb{C} \setminus [0, ||T||]$, then the function $f: [a, b] \to \mathbb{C}$ with $f(x) = \frac{1}{\lambda - x^2}$ is bounded. Therefore, the map $R_{\lambda} \colon L^2([a, b]; \mathbb{C}) \to L^2([a, b]; \mathbb{C})$ given by $g \mapsto gf$ is continuous. Moreover, by construction $(\lambda - T)(gf) = g$ for any $g \in L^2([a, b]; \mathbb{C})$, which proves $(\lambda - T)^{-1} = R_{\lambda}$. To conclude, $\sigma(T) = [0, ||T||]$.