12.1. Integral operators

(a) Let $f \in L^{2}(\Omega)$. Then Hölder's inequality and Fubini's theorem imply

$$
\begin{aligned}
\int_{\Omega}|(K f)(x)|^{2} d x & =\int_{\Omega}\left|\int_{\Omega} k(x, y) f(y) d y\right|^{2} d x \leq \int_{\Omega}\left(\int_{\Omega}|k(x, y) f(y)| d y\right)^{2} d x \\
& \leq \int_{\Omega}\left(\int_{\Omega}|k(x, y)|^{2} d y\right)\|f\|_{L^{2}(\Omega)}^{2} d x=\|k\|_{L^{2}(\Omega \times \Omega)}^{2}\|f\|_{L^{2}(\Omega)}^{2}
\end{aligned}
$$

Since $k \in L^{2}(\Omega \times \Omega)$ by assumption, $\|K f\|_{L^{2}(\Omega)} \leq\|k\|_{L^{2}(\Omega \times \Omega)}\|f\|_{L^{2}(\Omega)}<\infty$ follows.
(b) Since the space $L^{2}(\Omega)$ is reflexive (which follows from being a Hilbert space), problem $11.4(\mathrm{e})$ implies that $K: L^{2}(\Omega) \rightarrow L^{2}(\Omega)$ is a compact operator, if K maps weakly convergent sequences to norm-convergent sequences.
Let $\left(f_{n}\right)_{n \in \mathbb{N}}$ be sequence in $L^{2}(\Omega)$ such that $f_{n} \xrightarrow{\mathrm{w}} f$ as $n \rightarrow \infty$ for some $f \in L^{2}(\Omega)$. Since $k \in L^{2}(\Omega \times \Omega)$, Fubini's theorem implies that $k(x, \cdot) \in L^{2}(\Omega)$ for almost every $x \in \Omega$. Weak convergence therefore implies

$$
\left(K f_{n}\right)(x)=\left\langle k(x, \cdot), f_{n}\right\rangle_{L^{2}(\Omega)} \xrightarrow{n \rightarrow \infty}\langle k(x, \cdot), f\rangle_{L^{2}(\Omega)}=(K f)(x)
$$

for almost every $x \in \Omega$. As weakly convergent sequence, $\left(f_{n}\right)_{n \in \mathbb{N}}$ is bounded: there exists $C \in \mathbb{R}$ such that $\left\|f_{n}\right\|_{L^{2}(\Omega)} \leq C$ for every $n \in \mathbb{N}$. By Hölder's inequality,

$$
\left|\left(K f_{n}\right)(x)\right| \leq \int_{\Omega}\left|k(x, y) f_{n}(y)\right| d y \leq\|k(x, \cdot)\|_{L^{2}(\Omega)}\left\|f_{n}\right\|_{L^{2}(\Omega)} \leq C\|k(x, \cdot)\|_{L^{2}(\Omega)}
$$

The assumption $k \in L^{2}(\Omega \times \Omega)$ and Fubini's theorem imply that the function $x \mapsto C\|k(x, \cdot)\|_{L^{2}(\Omega)}$ is in $L^{2}(\Omega)$. Thus, $\left(K f_{n}\right)(x)$ is dominated by a function in $L^{2}(\Omega)$. Since $\left(K f_{n}\right)(x)$ converges pointwise for almost every $x \in \Omega$ to a function in $L^{2}(\Omega)$, the dominated convergence theorem implies L^{2}-convergence $\left\|K f_{n}-K f\right\|_{L^{2}(\Omega)} \rightarrow 0$.

12.2. Uniform subconvergence

For every $n \in \mathbb{N}$ and $x \in[0,1]$, the assumptions $f_{n}^{\prime}(0)=f_{n}(0)$ and $\left|f_{n}^{\prime}(t)\right| \leq C$ imply

$$
\left|f_{n}(x)\right| \leq\left|f_{n}(0)\right|+\int_{0}^{x}\left|f_{n}^{\prime}(t)\right| d t=\left|f_{n}^{\prime}(0)\right|+\int_{0}^{x}\left|f_{n}^{\prime}(t)\right| d t \leq C+x C \leq 2 C
$$

Consequently, $\left(f_{n}\right)_{n \in \mathbb{N}}$ is uniformly bounded in $C^{0}([0,1])$. It is also equicontinuous:

$$
\left|f_{n}(x)-f_{n}(y)\right|=\left|\int_{y}^{x} f_{n}^{\prime}(t) d t\right| \leq C|x-y|
$$

hence $\left|f_{n}(x)-f_{n}(y)\right|<\varepsilon$ whenever $|x-y|<\delta:=\frac{\varepsilon}{2 C}$. By the Arzelà-Ascoli theorem, $\left(f_{n}\right)_{n \in \mathbb{N}}$ has a uniformly convergent subsequence.

12.3. Multiplication operators on complex-valued sequences

(a) Given $a \in \ell_{\mathbb{C}}^{\infty}$, let $(T x)_{n}=a_{n} x_{n}$ for $x \in \ell_{\mathbb{C}}^{2}$. We obtain $\|T\| \leq\|a\|_{\ell_{\mathbb{C}}}$ from

$$
\|T x\|_{\ell_{\mathbb{C}}^{2}}^{2}=\sum_{n \in \mathbb{N}}\left|a_{n} x_{n}\right|^{2} \leq\|a\|_{\ell_{\mathscr{C}}^{\infty}}^{2}\|x\|_{\ell_{\mathbb{C}}^{2}}^{2} .
$$

Given any $k \in \mathbb{N}$ let $e_{k}=(0, \ldots, 0,1,0, \ldots) \in \ell_{\mathbb{C}}^{2}$, where the 1 is at k-th position. Then, $\left\|T e_{k}\right\|_{\ell_{\mathbb{C}}^{2}}=\left|a_{k}\right|=\left|a_{k}\right|\left\|e_{k}\right\|_{\ell_{\mathbb{C}}^{2}}$ implies $\|T\| \geq\left|a_{k}\right|$. Since $k \in \mathbb{N}$ is arbitrary, $\|T\| \geq\|a\|_{\ell \subset}^{\infty}$ follows. To conclude, $\|T\|=\|a\|_{\ell_{\mathbb{C}}^{\infty}}$.
(b) The adjoint operator T^{*} of T is given by $\left(T^{*} y\right)_{n}=\overline{a_{n}} y_{n}$ for $y \in \ell_{\mathbb{C}}^{2}$ because

$$
\forall x, y \in \ell_{\mathbb{C}}^{2} \quad\left(x, T^{*} y\right)_{\ell_{\mathbb{C}}^{2}}=(T x, y)_{\ell_{\mathbb{C}}^{2}}=\sum_{n \in \mathbb{N}} a_{n} x_{n} \overline{y_{n}}=\sum_{n \in \mathbb{N}} x_{n} \overline{\overline{a_{n}} y_{n}} .
$$

and we conclude $T=T^{*} \Leftrightarrow a_{n}=\overline{a_{n}} \quad \forall n \in \mathbb{N}$.
(c) Let $T \in L\left(\ell_{\mathbb{C}}^{2}, \ell_{\mathbb{C}}^{2}\right)$ and $e_{k} \in \ell_{\mathbb{C}}^{2}$ be as in (a). Being an orthonormal system of the Hilbert space $\ell_{\mathbb{C}}^{2}$, the sequence $\left(e_{n}\right)_{n \in \mathbb{N}}$ converges weakly to zero. If T is a compact operator, then $\left|a_{n}\right|=\left\|T e_{n}\right\|_{\ell_{\mathbb{C}}^{2}} \rightarrow 0$ as $n \rightarrow \infty$.
Conversely, let $\left(a_{n}\right)_{n \in \mathbb{N}}$ be a sequence in \mathbb{C} such that $a_{n} \rightarrow 0$ as $n \rightarrow \infty$ and let $T \in L\left(\ell_{\mathbb{C}}^{2}, \ell_{\mathbb{C}}^{2}\right)$ be the corresponding multiplication operator. Let $\left(x^{(k)}\right)_{k \in \mathbb{N}}$ be any bounded sequence in $\ell_{\mathbb{C}}^{2}$ and $C>0$ a constant such that $\left\|x^{(k)}\right\|_{\ell_{\mathbb{C}}^{2}} \leq C$ for every $k \in \mathbb{N}$. Since $\ell_{\mathbb{C}}^{2}$ is reflexive, there exists $x \in \ell_{\mathbb{C}}^{2}$ and an unbounded subset $\Lambda \subset \mathbb{N}$ such that $x^{(k)} \xrightarrow{\mathrm{w}} x$ as $\Lambda \ni k \rightarrow \infty$. In particular,

$$
\begin{equation*}
\lim _{\Lambda \ni k \rightarrow \infty} x_{n}^{(k)}=\lim _{\Lambda \ni k \rightarrow \infty}\left(e_{n}, x^{(k)}\right)_{\ell_{\mathbb{C}}^{2}}=\left(e_{n}, x\right)_{\ell_{\mathbb{C}}^{2}}=x_{n} . \tag{*}
\end{equation*}
$$

Moreover, since $B_{C}\left(0 ; \ell_{\mathbb{C}}^{2}\right)$ is weakly closed, $\|x\|_{\ell_{\mathbb{C}}^{2}} \leq C$. Let $\varepsilon>0$. By assumption, there exists $N \in \mathbb{N}$ such that $\left|a_{n}\right|^{2}<\frac{\varepsilon}{4 C}$ for all $n \geq N$. Assuming $a \not \equiv 0$, let $K \in \Lambda$ such that for all $\Lambda \ni k \geq K$ and each of the finitely many $n \in\{1, \ldots, N\}$ there holds

$$
\left|x_{n}^{(k)}-x_{n}\right|^{2}<\frac{\varepsilon}{2 N\|a\|_{\ell_{C}}^{2}} .
$$

This is possible due to $(*)$. Then, for all $\Lambda \ni k \geq K$

$$
\begin{aligned}
\left\|T x^{(k)}-T x\right\|_{\ell_{\mathbb{C}}^{2}}^{2} & =\sum_{n=1}^{N}\left|a_{n}\left(x_{n}^{(k)}-x_{n}\right)\right|^{2}+\sum_{n=N+1}^{\infty}\left|a_{n}\left(x_{n}^{(k)}-x_{n}\right)\right|^{2} \\
& <\sum_{n=1}^{N} \frac{\left|a_{n}\right|^{2} \varepsilon}{2 N\|a\|_{\ell_{\mathbb{C}}^{\infty}}^{2}}+\frac{\varepsilon}{4 C} \sum_{n \in \mathbb{N}}\left(\left|x_{n}^{(k)}\right|^{2}+\left|x_{n}\right|^{2}\right) \leq \frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon .
\end{aligned}
$$

Thus, $\left(T x^{(k)}\right)_{k \in \Lambda}$ converges in $\ell_{\mathbb{C}}^{2}$ which proves that T is a compact operator.

12.4. A compact operator on continuous functions

Given $a<b$, let $T: C^{0}([a, b]) \rightarrow C^{0}([a, b])$ be the linear operator defined by

$$
(T f)(x)=\int_{a}^{x} \frac{f(t)}{\sqrt{x-t}} d t
$$

(a) For every $x \in[a, b]$ and any $f \in C^{0}([a, b])$ there holds

$$
\begin{aligned}
& \int_{a}^{x} \frac{1}{\sqrt{x-t}} d t \\
&=[-2 \sqrt{x-t}]_{t=a}^{x}=2 \sqrt{x-a} \\
&|(T f)(x)| \leq \int_{a}^{x} \frac{|f(t)|}{\sqrt{x-t}} d t \leq 2 \sqrt{x-a}\|f\|_{C^{0}([a, b])}
\end{aligned}
$$

Therefore, $\|T f\|_{C^{0}([a, b])} \leq 2 \sqrt{b-a}\|f\|_{C^{0}([a, b])}$ and $\|T\| \leq 2 \sqrt{b-a}$. In fact, choosing a constant function f, we obtain $\|T\|=2 \sqrt{b-a}$.
(b) Let $\left(f_{n}\right)_{n \in \mathbb{N}}$ be a bounded sequence in $C^{0}([a, b])$ and let $C>0$ be a constant such that $\left\|f_{n}\right\|_{C^{0}([a, b])} \leq C$ for all $n \in \mathbb{N}$. Then the sequence $\left(T f_{n}\right)_{n \in \mathbb{N}}$ is also (uniformly) bounded in $C^{0}([a, b])$ since

$$
\left\|T f_{n}\right\|_{C^{0}([a, b)} \leq\|T\|\left\|f_{n}\right\|_{\left.C^{o}(a, b)\right)} \leq 2 C \sqrt{b-a}
$$

by part (a). To show equicontinuity, we consider $a \leq x \leq y \leq b$ and estimate

$$
\begin{aligned}
\left|\left(T f_{n}\right)(y)-\left(T f_{n}\right)(x)\right| & =\left|\int_{a}^{y} \frac{f_{n}(t)}{\sqrt{y-t}} d t-\int_{a}^{x} \frac{f_{n}(t)}{\sqrt{x-t}} d t\right| \\
& =\left|\int_{x}^{y} \frac{f_{n}(t)}{\sqrt{y-t}} d t-\int_{a}^{x}\left(\frac{f_{n}(t)}{\sqrt{x-t}}-\frac{f_{n}(t)}{\sqrt{y-t}}\right) d t\right| \\
& \leq \int_{x}^{y} \frac{\left|f_{n}(t)\right|}{\sqrt{y-t}} d t+\int_{a}^{x}\left|f_{n}(t)\right|\left(\frac{1}{\sqrt{x-t}}-\frac{1}{\sqrt{y-t}}\right) d t \\
& \leq C\left(\int_{x}^{y} \frac{1}{\sqrt{y-t}} d t+\int_{a}^{x}\left(\frac{1}{\sqrt{x-t}}-\frac{1}{\sqrt{y-t}}\right) d t\right) \\
& \leq 2 C(\sqrt{y-x}+\sqrt{x-a}-\sqrt{y-a}+\sqrt{y-x}) \\
& \leq 4 C \sqrt{y-x} .
\end{aligned}
$$

Hence, $\left|\left(T f_{n}\right)(y)-\left(T f_{n}\right)(x)\right|<\varepsilon$ whenever $|y-x|<\delta:=\frac{\varepsilon^{2}}{16 C^{2}}$. By the Arzelà-Ascoli theorem, $\left(T f_{n}\right)_{n \in \mathbb{N}}$ has a uniformly convergent subsequence, which proves that T is a compact operator.
(c) In part (a) we computed the operator norm $\|T\|=2 \sqrt{b-a}$. By definition,

$$
r_{T}:=\inf _{n \in \mathbb{N}}\left\|T^{n}\right\|^{\frac{1}{n}} \leq\|T\|=2 \sqrt{b-a}
$$

12.5. A multiplication operator on square-integrable functions

Given $-\infty<a \leq 0 \leq b<\infty$, let $T: L^{2}([a, b] ; \mathbb{C}) \rightarrow L^{2}([a, b] ; \mathbb{C})$ be the linear operator defined by

$$
(T f)(x)=x^{2} f(x)
$$

(a) For every $f \in L^{2}([a, b] ; \mathbb{C})$, there holds

$$
\begin{aligned}
\|T f\|_{L^{2}([a, b] ; \mathbb{C})}^{2}=\int_{a}^{b} x^{4}|f(x)|^{2} d x & \leq\left(\max _{x \in[a, b]} x^{4}\right)\|f\|_{L^{2}([a, b] ; \mathbb{C})}^{2} \\
\Rightarrow\|T\| & \leq \max \left\{a^{2}, b^{2}\right\} .
\end{aligned}
$$

Suppose $b>0$. Let $0<\varepsilon<b$ and let $f_{\varepsilon}=\varepsilon^{-\frac{1}{2}} \chi_{[b-\varepsilon, b]}$, where $\chi_{[b-\varepsilon, b]}$ denotes the characteristic function of the interval $[b-\varepsilon, b] \subset[a, b]$. Then,

$$
\left\|T f_{\varepsilon}\right\|_{L^{2}([a, b] ; \mathbb{C})}^{2}=\int_{b-\varepsilon}^{b} x^{4}\left|f_{\varepsilon}(x)\right|^{2} d x \geq(b-\varepsilon)^{4}\left\|f_{\varepsilon}\right\|_{L^{2}([a, b] ; \mathbb{C})}^{2}
$$

Since $\varepsilon>0$ is arbitrary, we obtain $\|T\| \geq b^{2}$. Analogously, we can prove $\|T\| \geq a^{2}$ under the assumption $a<0$. In total, we obtain $\|T\|=\max \left\{a^{2}, b^{2}\right\}$.
(b) Suppose $\lambda \in \mathbb{C}$ and $f \in L^{2}([a, b] ; \mathbb{C})$ satisfy $T f=\lambda f$. For almost every $x \in[a, b]$,

$$
0=(\lambda f-T f)(x)=\left(\lambda-x^{2}\right) f(x)
$$

From $\lambda-x^{2} \neq 0$ for almost all $x \in[a, b]$ we conclude $f(x)=0$ for almost all $x \in[a, b]$. Hence, $f=0$ in $L^{2}([a, b] ; \mathbb{C})$ which proves that the operator T has no eigenvalues.
(c) In part (b) we prove that the operator $(\lambda-T)$ is injective for any $\lambda \in \mathbb{C}$. If the operator $(\lambda-T)$ were surjective, there would exist $f \in L^{2}([a, b] ; \mathbb{C})$ with $\lambda f-T f=1$. Then, for almost every $x \in[a, b]$,

$$
1=\lambda f(x)-T f(x)=\left(\lambda-x^{2}\right) f(x) \quad \Rightarrow f(x)=\frac{1}{\lambda-x^{2}} .
$$

If $0 \leq \lambda \in \mathbb{R}$ and if $a \leq-\sqrt{\lambda}$ or $\sqrt{\lambda} \leq b$, then $f \notin L^{2}([a, b])$ in contradiction to our assumption because of the singularity at $x \in[a, b]$ satisfying $x^{2}=\lambda$. Therefore, $(\lambda-T)$ is not surjective for $\lambda \in\left[0, \max \left\{a^{2}, b^{2}\right\}\right]$ which shows $[0,\|T\|] \subset \sigma(T)$.
If $\lambda \in \mathbb{C} \backslash[0,\|T\|]$, then the function $f:[a, b] \rightarrow \mathbb{C}$ with $f(x)=\frac{1}{\lambda-x^{2}}$ is bounded. Therefore, the map $R_{\lambda}: L^{2}([a, b] ; \mathbb{C}) \rightarrow L^{2}([a, b] ; \mathbb{C})$ given by $g \mapsto g f$ is continuous. Moreover, by construction $(\lambda-T)(g f)=g$ for any $g \in L^{2}([a, b] ; \mathbb{C})$, which proves $(\lambda-T)^{-1}=R_{\lambda}$. To conclude, $\sigma(T)=[0,\|T\|]$.

