13.1. Definitions of resolvent set

Let $A: D_A \subset X \to X$ be a linear operator with closed graph. The claim is that the following subsets of \mathbb{C} coincide.

$$\rho(A) = \{ \lambda \in \mathbb{C} \mid (\lambda - A) : D_A \to X \text{ is bijective, } \exists (\lambda - A)^{-1} \in L(X, X) \},$$

$$\tilde{\rho}(A) = \{\lambda \in \mathbb{C} \mid (\lambda - A) \colon D_A \to X \text{ is injective with dense image,} \}$$

$$\exists (\lambda - A)^{-1} \in L(X, X) \}.$$

Let $\lambda \in \tilde{\rho}(A)$. To show $\lambda \in \rho(A)$, we need to prove that $(\lambda - A) \colon D_A \to X$ is surjective. Let $y \in X$. Since $(\lambda - A)$ has dense image, there exists a sequence $(y_n)_{n \in \mathbb{N}}$ in the image of $(\lambda - A)$ such that $||y_n - y||_X \to 0$ as $n \to \infty$. Let $x_n = (\lambda - A)^{-1}y_n \in D_A$. Since $(y_n)_{n \in \mathbb{N}}$ is a Cauchy-sequence in Y, and since

$$||x_m - x_n||_X = ||(\lambda - A)^{-1}(y_m - y_n)||_X \le ||(\lambda - A)^{-1}||_{L(X,X)}||y_m - y_n||_X,$$

we conclude that $(x_n)_{n\in\mathbb{N}}$ is a Cauchy-sequence in X. Since X is complete, there exists a limit point $X\ni x=\lim_{n\to\infty}x_n$. Moreover,

$$Ax_n = \lambda x_n - y_n \xrightarrow{n \to \infty} \lambda x - y.$$

Since A has closed graph $x \in D_A$ with $Ax = \lambda x - y$. This implies $y = (\lambda - A)x$. Thus, $(\lambda - A)$ is surjective and $\lambda \in \rho(A)$ follows. The reverse inclusion $\rho(A) \subset \tilde{\rho}(A)$ is trivial.

13.2. Unitary operators

(a) Suppose, $T \in L(H, H)$ is an unitary operator. Then, T is invertible with inverse $T^{-1} = T^* \in L(H, H)$. In particular, T is bijective. T is also an isometry, because

$$\forall x \in H: \qquad \left\|Tx\right\|_{H}^{2} = \left\langle Tx, Tx\right\rangle_{H} = \left\langle T^{*}Tx, x\right\rangle_{H} = \left\langle x, x\right\rangle_{H} = \left\|x\right\|_{H}^{2}.$$

Conversely, suppose, $T \in L(H, H)$ is an bijective isometry. Then, $||Tx||_H^2 = ||x||_H^2$ for every $x \in H$. From the (complex) polarization identity

$$\langle x,y\rangle_{H}=\frac{1}{4}\Big(\left\|x+y\right\|^{2}-\left\|x-y\right\|^{2}\Big)+\frac{i}{4}\Big(\left\|x+iy\right\|_{H}^{2}-\left\|x-iy\right\|_{H}^{2}\Big)$$

(which is motivated by the parallelogram identity), we conclude $\langle Tx, Ty \rangle_H = \langle x, y \rangle_H$ for every $x, y \in H$. In other words, isometries preserve the scalar product. Therefore,

$$\langle T^*Tx, y \rangle_H = \langle Tx, Ty \rangle_H = \langle x, y \rangle_H$$

for every $x, y \in H$ which implies $T^*Tx = x$ for every $x \in H$. Since T is bijective, we obtain $T^* = T^{-1}$ which means that T is unitary.

(b) Let $T \in L(H, H)$ be unitary. Part (a) implies that T and $T^* = T^{-1}$ are bijective isometries. Therefore, $||T|| = 1 = ||T^*||$. Since the spectral radius of T is bounded from above by ||T|| = 1, we obtain $\{\lambda \in \mathbb{C} \mid |\lambda| > 1\} \subset \rho(T)$ from Satz 6.5.3.i.

Given $\lambda \in \mathbb{C}$ with $0 \le |\lambda| < 1$, the spectral radius of the operator (λT^*) is bounded from above by $\|\lambda T^*\| = |\lambda| < 1$. Thus, $(1 - \lambda T^*)$ is invertible on H by Satz 2.2.7. Hence, $(\lambda - T) = -T \circ (1 - \lambda T^*)$ is bijective as composition of bijective operators and we obtain $\lambda \in \rho(T)$. To conclude, $\sigma(T) \subset \mathbb{S}^1$.

13.3. Integral operators revisited

From k(x,y) = k(y,x) for almost every $(x,y) \in \Omega \times \Omega$ and with the help of Fubini's theorem, we conclude that the integral operator $K \colon L^2(\Omega) \to L^2(\Omega)$ is symmetric:

$$\begin{split} \forall f,g \in L^2(\Omega): \quad \langle Kf,g \rangle_{L^2(\Omega)} &= \int_{\Omega} \biggl(\int_{\Omega} k(x,y) f(y) \, dy \biggr) g(x) \, dx \\ &= \int_{\Omega} f(y) \biggl(\int_{\Omega} k(y,x) g(x) \, dx \biggr) \, dy = \langle f,Kg \rangle_{L^2(\Omega)}. \end{split}$$

In fact, K is self-adjoint, since $D_K = L^2(\Omega) = D_{K^*}$. Therefore, the operator $A = (1 - K): L^2(\Omega) \to L^2(\Omega)$ is also self-adjoint (Beispiel 6.4.2.ii).

According to problem 12.1(b), K is a compact operator, which implies that the operator A = (1 - K) has closed image $\operatorname{im}(A) \subset H$. According to Banach's closed range theorem, this is equivalent to $\operatorname{im}(A) = \ker(A^*)^{\perp}$. Since $A^* = A$, we conclude

A surjective
$$\Leftrightarrow H = \operatorname{im}(A) = \ker(A)^{\perp} \Leftrightarrow \ker(A) = \{0\} \Leftrightarrow A \text{ injective.}$$

13.4. Resolvents and spectral distance

(a) Given the self-adjoint operator $A \in L(H, H)$ and an element $\lambda \in \rho(A)$, the operator $(\lambda - A) \in L(H, H)$ is bijective with inverse $R_{\lambda} = (\lambda - A)^{-1} \in L(H, H)$. Problem 11.2 (a) then implies that R_{λ}^* is bijective and according to Problem 11.1 (c),

$$R_{\lambda}^{*} = \left((\lambda - A)^{-1} \right)^{*} = \left((\lambda - A)^{*} \right)^{-1} = (\overline{\lambda} - A^{*})^{-1} = (\overline{\lambda} - A)^{-1} = R_{\overline{\lambda}}.$$

Alternatively, for any $x, y \in H$, we can directly compute

$$\begin{split} \langle x,y\rangle_{H} &= \langle (\lambda-A)R_{\lambda}x,y\rangle_{H} = \langle \lambda R_{\lambda}x,y\rangle_{H} - \langle AR_{\lambda}x,y\rangle_{H} \\ &= \langle R_{\lambda}x,\overline{\lambda}y\rangle_{H} - \langle R_{\lambda}x,Ay\rangle_{H} = \langle R_{\lambda}x,(\overline{\lambda}-A)y\rangle_{H} = \langle x,R_{\lambda}^{*}(\overline{\lambda}-A)y\rangle_{H} \end{split}$$

which implies $R_{\lambda}^*(\overline{\lambda} - A)y = y$ for any $y \in H$. According to Satz 6.5.2, resolvents commute: $R_{\lambda}R_{\overline{\lambda}} = R_{\overline{\lambda}}R_{\lambda}$. This implies that R_{λ} is a normal operator: $R_{\lambda}R_{\lambda}^* = R_{\lambda}^*R_{\lambda}$.

(b) Let $A, B \in L(H, H)$ be self-adjoint operators. By symmetry of the Hausdorff distance (in the sense that we can switch the roles of A and B), it suffices to prove

$$\sup_{\alpha \in \sigma(A)} \left(\inf_{\beta \in \sigma(B)} |\alpha - \beta| \right) \le ||A - B||_{L(H,H)}.$$

The claim follows, if we show the following implication for any $\alpha \in \mathbb{C}$.

$$\inf_{\beta \in \sigma(B)} |\alpha - \beta| > ||A - B||_{L(H,H)} \qquad \Rightarrow \alpha \in \rho(A) = \mathbb{C} \setminus \sigma(A).$$

Let $\alpha \in \mathbb{C}$ satisfy $\inf_{\beta \in \sigma(B)} |\alpha - \beta| > ||A - B||_{L(H,H)}$. Since the claim is trivial otherwise, we may assume $||A - B||_{L(H,H)} > 0$. Then, α has positive distance from $\sigma(B)$ which implies $\alpha \in \rho(B)$. Hence, $(\alpha - B)^{-1}$ is well-defined and we obtain

$$(\alpha - A) = (\alpha - B) - (A - B) = (1 - (A - B)(\alpha - B)^{-1})(\alpha - B).$$
 (*)

Since $(\alpha - B)$ is bijective, it remains to prove that $(1 - (A - B)(\alpha - B)^{-1})$ is bijective. This follows from Satz 2.2.7 if we prove $||(A - B)(\alpha - B)^{-1}||_{L(H,H)} < 1$.

Consider the rational function $f_{\alpha} \colon \mathbb{C} \to \mathbb{C}$ given by $f_{\alpha}(z) = (\alpha - z)^{-1}$. By assumption,

$$\frac{1}{\|A - B\|} > \frac{1}{\inf_{\beta \in \sigma(B)} |\alpha - \beta|} = \sup_{\beta \in \sigma(B)} \frac{1}{|\alpha - \beta|} = \sup \{|x| \mid x \in f_{\alpha}(\sigma(B))\}.$$

The spectral mapping theorem (Satz 6.5.4) implies $f_{\alpha}(\sigma(B)) = \sigma(f_{\alpha}(B))$. Thus,

$$\frac{1}{\|A - B\|} > \sup\{|x| \mid x \in \sigma(f_{\alpha}(B))\} = \sup_{x \in \sigma(f_{\alpha}(B))} |x| = r_{f_{\alpha}(B)} \tag{\dagger}$$

where we use the characterisation of spectral radius proven in Satz 6.5.3. Since $f_{\alpha}(B) = (\alpha - B)^{-1} =: R$ is a resolvent of B, it is a normal operator by (a). Hence,

$$\begin{split} & \|Rx\|_{H}^{2} = \langle Rx, Rx \rangle_{H} = \langle R^{*}Rx, x \rangle_{H} = \langle RR^{*}x, x \rangle_{H} = \langle R^{*}x, R^{*}x \rangle_{H} = \|R^{*}x\|_{H}^{2}, \\ & \|Rx\|_{H}^{2} = \langle R^{*}Rx, x \rangle_{H} \leq \|R^{*}Rx\|_{H} \|x\|_{H} \leq \|R^{*}R\| \|x\|_{H}^{2}, \\ & \Rightarrow \|R\|^{2} \leq \|R^{*}R\| \leq \|R^{*}\| \|R\| = \|R\|^{2}, \\ & \Rightarrow \|R\|^{2} = \|R^{*}R\| = \sup_{\|x\|_{H} = 1} \|R^{*}(Rx)\|_{H} = \sup_{\|x\|_{H} = 1} \|R(Rx)\|_{H} = \|R^{2}\|. \end{split}$$

(Note how the last identity makes use of the first identity.) Inductively, we obtain $\|R\|^{2^n} = \|R^{2^n}\|$ for every $n \in \mathbb{N}$ which implies $r_{f_{\alpha}(B)} = r_R = \|R\| = \|(\alpha - B)^{-1}\|$. Combined with estimate (†), we obtain $\frac{1}{\|A - B\|} > \|(\alpha - B)^{-1}\|$, which yields

$$||(A - B)(\alpha - B)^{-1}|| \le ||A - B|| ||(\alpha - B)^{-1}|| < 1$$

and proves the claim: From (*) we conclude $\alpha \in \rho(A)$.

13.5. Heisenberg's uncertainty principle

Let $A: D_A \subset H \to H$ and $B: D_B \subset H \to H$ be densely defined, symmetric linear operators on the Hilbert space $(H, \langle \cdot, \cdot \rangle_H)$ such that $A(D_A) \subset D_B$ and $B(D_B) \subset D_A$.

(a) Let $x \in D_{[A,B]} := D_A \cap D_B$. Then, applying the Cauchy–Schwarz inequality,

$$\begin{split} \left| \langle x, [A,B]x \rangle_H \right| &\leq \left| \langle x, A(Bx) \rangle_H \right| + \left| \langle x, B(Ax) \rangle_H \right| = \left| \langle Ax, Bx \rangle_H \right| + \left| \langle Bx, Ax \rangle_H \right| \\ &\leq \|Ax\|_H \|Bx\|_H + \|Bx\|_H \|Ax\|_H = 2\|Ax\|_H \|Bx\|_H. \end{split}$$

(b) Since A is a symmetric operator, $\langle x, Ax \rangle_H$ is real for any $x \in D_A \subset D_{A^*}$. Indeed,

$$\langle x,Ax\rangle_H=\langle A^*x,x\rangle_H=\langle Ax,x\rangle_H=\overline{\langle x,Ax\rangle}_H.$$

Moreover, for $x \in D_A$ with $||x||_H = 1$, we have

$$\langle x, Ax \rangle_H^2 \le \|x\|_H^2 \|Ax\|_H^2 = \langle Ax, Ax \rangle_H$$

Therefore,

$$\mathbb{R} \ni \varsigma(A, x) := \sqrt{\langle Ax, Ax \rangle_H - \langle x, Ax \rangle_H^2}.$$

For any $\lambda, \mu \in \mathbb{R}$, the commutators [A, B] and $[A - \lambda, B - \mu]$ agree:

$$[A - \lambda, B - \mu] = (A - \lambda)(B - \mu) - (B - \mu)(A - \lambda)$$
$$= AB - \mu A - \lambda B + \lambda \mu - BA + \lambda B + \mu A - \lambda \mu = [A, B].$$

Since A is symmetric and $\lambda \in \mathbb{R}$, the operator $\tilde{A} = A - \lambda$ is also symmetric on $D_{\tilde{A}} = D_A$. Moreover, for any $x \in D_A$,

$$\begin{split} \|\tilde{A}x\|_{H}^{2} &= \langle \tilde{A}x, \tilde{A}x \rangle_{H} = \langle Ax - \lambda x, Ax - \lambda x \rangle_{H} \\ &= \langle Ax, Ax \rangle_{H} - \lambda \langle x, Ax \rangle_{H} - \lambda \langle Ax, x \rangle_{H} + \lambda^{2} \langle x, x \rangle_{H} \\ &= \langle Ax, Ax \rangle_{H} - 2\lambda \langle x, Ax \rangle_{H} + \lambda^{2} \langle x, x \rangle_{H}. \end{split}$$

We observe that if we choose $\lambda = \langle x, Ax \rangle_H \in \mathbb{R}$ and if $||x||_H = 1$, then

$$\|\tilde{A}x\|_H^2 = \langle Ax, Ax \rangle_H - \langle x, Ax \rangle_H^2 = \varsigma(A, x)^2.$$

Now, let $x \in D_{[A,B]} := D_A \cap D_B$ with $||x||_H = 1$ be arbitrary. Since the operators $\tilde{A} := A - \langle x, Ax \rangle_H$ and $\tilde{B} := B - \langle x, Bx \rangle_H$ are symmetric, part (a) applies and yields

$$\left| \langle x, [A,B]x \rangle_H \right| = \left| \langle x, [\tilde{A},\tilde{B}]x \rangle_H \right| \leq 2 \|\tilde{A}x\|_H \|\tilde{B}x\|_H = 2\varsigma(A,x)\,\varsigma(B,x).$$

(c) Suppose, $B: H \to H$ with finite operator-norm and $A: D_A \subset H \to H$ satisfy $[A, B] = i \operatorname{Id}_{D_{[A,B]}}$.

By assumption, $D_{[A,B]} = D_A \cap H = D_A$ and $B(D_A) \subset D_A$. In particular, for any $n \in \mathbb{N}$ the inclusion $B^n(D_A) \subset D_A$ is satisfied, which is necessary to define $[A, B^n]$. We prove $[A, B^n] = niB^{n-1}$ by induction. For n = 1, the claim holds by assumption. Suppose, it is true for some $n \in \mathbb{N}$. Then

$$[A, B^{n+1}] = AB^{n+1} - B^{n+1}A = (AB^n - B^nA + B^nA)B - B^{n+1}A$$
$$= ([A, B^n] + B^nA)B - B^{n+1}A = niB^{n-1}B + B^nAB - B^{n+1}A$$
$$= niB^n + B^n[A, B] = niB^n + iB^n = (n+1)iB^n.$$

A consequence is that B cannot be nilpotent: If $B^n=0$ for some $n\in\mathbb{N}$, then $B^{n-1}=\frac{1}{ni}[A,B^n]=0$ which iterates to B=0 in contradiction to $[A,B]\neq 0$. Suppose, A has finite operator norm $\|A\|$. Then,

$$|n||B^{n-1}|| = ||[A, B^n]|| \le ||AB^n|| + ||B^nA|| \le 2||A||||B^{n-1}|||B||.$$

Since $||B^{n-1}|| \neq 0$, we obtain $2||A|| \geq \frac{n}{||B||}$ which contradicts $n \in \mathbb{N}$ being arbitrary.

(d) If $f \in C^1([0,1];\mathbb{C})$, then f' is bounded and in particular $f' \in L^2([0,1];\mathbb{C})$. The map $[0,1] \ni s \mapsto s$ is also bounded. Therefore, the linear operators

$$P \colon C_0^1([0,1];\mathbb{C}) \to L^2([0,1];\mathbb{C}), \qquad Q \colon L^2([0,1];\mathbb{C}) \to L^2([0,1];\mathbb{C})$$

 $f(s) \mapsto if'(s) \qquad f(s) \mapsto sf(s)$

are indeed well-defined. They are also symmetric. For Q this follows trivially from $s \in [0,1] \subset \mathbb{R}$. Given any $f,g \in D_P := C_0^1([0,1];\mathbb{C})$, we have

$$\langle Pf, g \rangle_{L^2} = \int_0^1 if'(s)\overline{g}(s) \, ds = -\int_0^1 if(s)\overline{g}'(s) \, ds = \int_0^1 f(s)\overline{ig'(s)} \, ds = \langle f, Pg \rangle_{L^2}.$$

When integrating by parts, the boundary terms vanish due to f(0) = 0 = f(1). Hence, $P: C_0^1([0,1];\mathbb{C}) \to L^2([0,1];\mathbb{C})$ is symmetric (but *not* self-adjoint! see Beispiel 6.6.1).

Next, we verify that the commutator [P,Q] is well-defined. Since $D_Q = L^2([0,1];\mathbb{C})$ is the whole space, the only thing to check is that $Qf: s \mapsto sf(s)$ is in $D_P = C_0^1([0,1];\mathbb{C})$ whenever $f \in D_{[P,Q]} = C_0^1([0,1];\mathbb{C})$. But this follows trivially from the product rule. Moreover,

$$([P,Q]f)(s) = (P(Qf))(s) - (Q(Pf))(s) = if(s) + isf'(s) - sif'(s) = if(s)$$

for almost every $s \in [0,1]$ which proves that P,Q is a Heisenberg-pair. By part (b),

$$\forall f \in C_0^1, \|f\|_{L^2} = 1: \quad \varsigma(P, f) \varsigma(Q, f) \ge \frac{1}{2} \left| \langle f, [P, Q] f \rangle_{L^2} \right| = \frac{1}{2} \left| \langle f, if \rangle_{L^2} \right| = \frac{1}{2}.$$