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13.1. Definitions of resolvent set

Let A: Dy C X — X be a linear operator with closed graph. The claim is that the
following subsets of C coincide.

p(A)={N e C|(\— A): Dy — X is bijective, 3N\ — A)~' € L(X, X)},
p(A)={ e C| (A= A): Dy — X is injective with dense image,
I -A) e L(X, X)}.

Let A € p(A). To show A € p(A), we need to prove that (A—A): Dy — X is surjective.
Let y € X. Since (A — A) has dense image, there exists a sequence (y,)nen in the
image of (A — A) such that ||y, — y||y — 0 as n — oco. Let x, = (A — A) "'y, € Dy.
Since (Yn)nen is a Cauchy-sequence in Y, and since

l2m = zallx = 1O = A7 ¥ = v) |y < IO =AM 0 [9m = vl

we conclude that (z,),en is a Cauchy-sequence in X. Since X is complete, there
exists a limit point X > x = lim,,_., x,,. Moreover,

Axy = ATy — Y —5 \x — 4.

Since A has closed graph = € D4 with Az = Az — y. This implies y = (A — A)z.
Thus, (A — A) is surjective and A € p(A) follows. The reverse inclusion p(A) C p(A)
is trivial.

13.2. Unitary operators

(a) Suppose, T' € L(H, H) is an unitary operator. Then, 7" is invertible with inverse
T-'=T*€ L(H, H). In particular, T is bijective. T is also an isometry, because

Ve € H : | Tx|? = (Tx,Tx)y, = (T*Tx,x), = (x,2) ;= =]

Conversely, suppose, T € L(H, H) is an bijective isometry. Then, | Tz = |z||3, for
every x € H. From the (complex) polarization identity

1 2 2 { . 2 . 2
(w5 = 7 (2 + 0 = o = ol?) + 3 (e + gl — e — il

(which is motivated by the parallelogram identity), we conclude (T'xz, Ty); = (z,y) 5
for every x,y € H. In other words, isometries preserve the scalar product. Therefore,

(T"Tx,y)y = T, Ty)y = (2, y)

for every x,y € H which implies T*Tx = x for every x € H. Since T is bijective, we
obtain T* = T—! which means that T is unitary.
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(b) Let T € L(H, H) be unitary. Part (a) implies that 7" and T* = T~! are bijective
isometries. Therefore, ||T'|| = 1 = ||T™*||. Since the spectral radius of 7" is bounded
from above by ||T'|| = 1, we obtain {A € C | |A\| > 1} C p(T) from Satz 6.5.3.1.

Given A € C with 0 < |A| < 1, the spectral radius of the operator (AT™) is bounded
from above by ||[A\T*|| = |A| < 1. Thus, (1 — A\T™) is invertible on H by Satz 2.2.7.
Hence, (A —=T) = —T o (1 — AT™) is bijective as composition of bijective operators
and we obtain A € p(T). To conclude, o(T) C S'.

13.3. Integral operators revisited

From k(z,y) = k(y, x) for almost every (z,y) €  x Q and with the help of Fubini’s
theorem, we conclude that the integral operator K : L*(Q) — L*(f2) is symmetric:

Vig € 1HQ): (KL g = [ ([ Fe) i) dy)o(a) do
I/Qf(y)(/Q k(y,x)g(x) dw) dy = (f, Kg) 12(0-

In fact, K is self-adjoint, since D = L*(Q2) = Dg~. Therefore, the operator
A=(1-K): L*(Q) — L*(Q) is also self-adjoint (Beispiel 6.4.2.ii).

According to problem 12.1 (b), K is a compact operator, which implies that the
operator A = (1 — K) has closed image im(A) C H. According to Banach’s closed
range theorem, this is equivalent to im(A) = ker(A*)*. Since A* = A, we conclude

A surjective < H =im(A) = ker(4)* & ker(A) = {0} < A injective.

13.4. Resolvents and spectral distance

(a) Given the self-adjoint operator A € L(H,H) and an element A € p(A), the

operator (A — A) € L(H, H) is bijective with inverse Ry = (A — A)~! € L(H, H).

Problem 11.2 (a) then implies that R} is bijective and according to Problem 11.1 (c),
Ry=((A=A)™") =((A=4))

Alternatively, for any x,y € H, we can directly compute

(@, 9) g = (A= A)R\z,y) y = (AR, y) g — (AR, Y)
= (R,\x,Xy)H - <R>\I7Ay>H = <R)\ZL’, (X_ A)y>H = <ZE,R;(X— A)y>H

1

(A=A = (- A) ' =R

which implies R;(A — A)y = y for any y € H. According to Satz 6.5.2, resolvents
commute: Ry\Ry = RyR,. This implies that R, is a normal operator: Ry\R} = R} R,.
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(b) Let A, B € L(H, H) be self-adjoint operators. By symmetry of the Hausdorff
distance (in the sense that we can switch the roles of A and B), it suffices to prove

N i |
sup (nf, o= 81) <14 = Bl

aco(A

The claim follows, if we show the following implication for any a € C.

5emf la =B > |A = Bllum = a€p(Ad)=C\o(A).

Let a € Csatisty infgeq(p)|a—B| > A= Bl - Since the claim is trivial otherwise,
we may assume [|A — B[ 5y > 0. Then, o has positive distance from ¢(B) which
implies o € p(B). Hence, (o — B)~! is well-defined and we obtain

(@ —A)=(a=B) = (A= B) = (1- (A= B)(a—B)™")(a - B). (%)

Since (o — B) is bijective, it remains to prove that (1 —(A=B)(a— B)_l) is bijective.
This follows from Satz 2.2.7 if we prove ||(A — B)(a — B)*1||L(H7H) < 1.

Consider the rational function f,: C — C given by f,(z) = (a—2)~!. By assumption,

L L L _ sup{|x| ‘ T € fa(a(B))}.

> = sup
l4—B|| = inf !&—BI seo(m) la — ]

The spectral mapping theorem (Satz 6.5.4) implies f,(0(B)) = o(fa(B)). Thus,

>suplle] |z € o(fo(B)} = sup |a| =rp,m) (1)

1
|A— B v€a(falB))

where we use the characterisation of spectral radius proven in Satz 6.5.3. Since
fa(B) = (o — B)™! =: R is a resolvent of B, it is a normal operator by (a). Hence,

IRz ||}, = (Re, Rx), = (R*Ra,x),, = (RR*w,x); = (R'x, R'x) y = || R,
IRz |7, = (R* R, x)y < | R*Rel|yll=ll; < [|R*RI[l|=]|%,

= |RII® < |[R*R|| < [|[R*|[|IR] = | RI,

= |R|*=|R*R| = sup |[R*(Rx)ll, = sup [|R(Rz)|, = |R?|.

llzll =1 ]l =1

(Note how the last identity makes use of the first identity.) Inductively, we obtain
|R||* = ||R?"| for every n € N which implies 17, (5) = rx = IR = |[(a — B)7Y.
Combined with estimate (1), we obtain =5, B” > ||[(a — B)™!||, which yields

I(A=B)(a—=B)| <[[A=Blll(a—B)| <1

and proves the claim: From (%) we conclude a € p(A).
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13.5. Heisenberg’s uncertainty principle

Let A: Do C H— H and B: Dg C H — H be densely defined, symmetric linear
operators on the Hilbert space (H, (-,-) ) such that A(D4) C Dg and B(Dg) C Dgy.

(a) Let x € Dya ) := DaN Dp. Then, applying the Cauchy-Schwarz inequality,

(@, [A, Bl | < |(w, A(B2) | +[(, B(A2)) | = [(Aw, Ba) | +[(Be, Av) |
< [ Aely | Bl + 1Bl | Azl = 20| Axl] | Bl

(b) Since A is a symmetric operator, (x, Az), is real for any x € Dy C D4-. Indeed,
(x, Ax) , = (A'z, )y = (Ax, x) ;= (x, Ax) .
Moreover, for x € Dy with ||z|; = 1, we have

(@, Av)y < ||zl llAz|y = (Az, Az)

Therefore,

R 5 ¢(A,7) == \/(Az, Ax),, — (x, Ax)?,.
For any A, 11 € R, the commutators [A, B] and [A — \, B — p] agree:

[A=AB—p=(A=XN)(B—-p)—(B-p)(A=2)
= AB— A —AB+ A — BA+AB + pA — Ap = [A, B].

Since A is symmetric and A\ € R, the operator A = A — X is also symmetric on
D ; = D4. Moreover, for any x € Dy,

|Az||5, = (Az, Az),, = (Ax — Az, Az — Az,
= (Az, Az);, — Mz, Ax), — MAz, 2) + Nz, 2)
= (Az, Ax) ; — 2\ (z, Az) ;; + N (2, 7) .

We observe that if we choose A = (z, Az),; € R and if ||z||; = 1, then
1Az |7 = (Az, Az)y — (x, Ax)y = <(A, @)%

Now, let x € Djap) := Da N Dp with |lz||;; = 1 be arbitrary. Since the operators
A:=A—(z,Ax), and B := B — (z, Bx), are symmetric, part (a) applies and yields

(2, [A, Blz) | = |(x, [4, Blz) | < 2||Axl| ;|| Bzl = 25(A, 7) s(B, ).
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(c) Suppose, B: H — H with finite operator-norm and A: Dy C H — H satisfy
[A, B] = iIdp, 4 -

By assumption, Djap = Da N H = Dy and B(Da) C Dy. In particular, for any
n € N the inclusion B"(D,4) C D, is satisfied, which is necessary to define [A, B"].
We prove [A, B"] = niB"! by induction. For n = 1, the claim holds by assumption.
Suppose, it is true for some n € N. Then

A, B™] = AB™! — B"1A = (AB" — B"A+ B"A)B - B""'A
= ([A,B"]+ B"A)B — B"'A =niB""'B + B"AB — B""' A
=niB" + B"[A, B = niB" +iB" = (n + 1)iB".
A consequence is that B cannot be nilpotent: If B" = 0 for some n € N, then
Bt = L[A B"] = 0 which iterates to B = 0 in contradiction to [A, B] # 0.
Suppose, A has finite operator norm ||Al|. Then,
nl|B" M| = [I[A, B"]| < [[AB"|| + [|B" Al < 2[|Al[[|B"~"[l[| BII

Since | B || # 0, we obtain 2||A|| > 57 Which contradicts n € N being arbitrary.

(d) If f € C'([0,1];C), then f’ is bounded and in particular f" € L*([0,1];C). The
map [0,1] 3 s+ s is also bounded. Therefore, the linear operators
P: Cy([0,1];C) — L*([0, 1];C), Q: L*([0,1];C) — L*([0,1];C)
f(s) = if'(s) f(s) = sf(s)

are indeed well-defined. They are also symmetric. For () this follows trivially from
s € [0,1] C R. Given any f,g € Dp := C2([0,1];C), we have

(Pf,q) > = /01 if'(s)g(s)ds = — /01 if(s)7(s)ds = /01 f(s)ig'(s)ds = (f, Pg) ..

When integrating by parts, the boundary terms vanish due to f(0) = 0 = f(1). Hence,
P: C3([0,1];C) — L*([0,1]; C) is symmetric (but not self-adjoint! see Beispiel 6.6.1).

Next, we verify that the commutator [P, Q] is well-defined. Since Dg = L?([0,1];C) is
the whole space, the only thing to check is that Qf: s+ sf(s) is in Dp = CL([0, 1]; C)
whenever f € Dipg = C§([0,1]; C). But this follows trivially from the product rule.
Moreover,

([P, Q1) (s) = (P(Q))(s) = (QP))(s) = if(s) +isf'(s) — sif'(s) = if(s)

for almost every s € [0, 1] which proves that P, @ is a Heisenberg-pair. By part (b),
VFECh Il =11 o(P1)s(Q,f) = 3{f [PQU) | = 3(frif) ] = 5.
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