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Problem 1.

(a) The following weak separation theorem holds: Let (X, ‖ · ‖) be a normed space
over the real field R. Let A,B ⊂ X be non-empty, convex and disjoint and let A be
open. Then there exists a functional l ∈ X∗ such that

sup
a∈A

l(a) ≤ inf
b∈B

l(b).

(b) Assume, for the sake of a contradiction, that the first assertion is false: then
one could find a sequence (rk) of positive real numbers, with rk ↘ 0 such that
Urk

(A) ∩ B 6= ∅ for all k ∈ N. Hence we can find, for any k, points ak ∈ A and
bk ∈ B ∩ Brk

(ak). By sequential compactness of A (which, we recall, is equivalent
to Heine-Borel compactness in the class of metric spaces) we have that, possibly
extracting a subsequence which we shall not rename, ak → a for some a ∈ A, as
k → ∞. However, by construction we have that ‖ak − bk‖ < rk and thus by the
triangle inequality we get ‖a− bk‖ ≤ ‖a− ak‖+ ‖ak − bk‖ which implies bk → a as
k →∞. Hence, being B closed, we infer that a ∈ B and thus a ∈ A ∩B, contrary to
the assumption that the two sets are actually disjoint.

For the second assertion, observe that trivially supa∈A l(a) ≤ supa′∈Ur(A) l(a′) since
A ⊂ Ur(A) and assume (again by contradiction) that the strict inequality fails, so
that equality must hold i. e. supa∈A l(a) = supa′∈Ur(A) l(a′). Now, since A is compact,
by the Weierstrass theorem supa∈A l(a) must be achieved at some (not necessarily
unique!) maximum point a ∈ A. It follows by the first derivative test that for any
v ∈ X with ‖v‖ = 1 one has that[

d

dt

]
t=0

l(a+ tv) = 0

which means l(v) = 0 for any v ∈ X with ‖v‖ = 1 and by linearity actually l(w) = 0
for any w ∈ X. Thus, l would be the null functional i. e. l = 0 in X∗, contrary to
the assumption.

(c) The following strong separation theorem holds: Let (X, ‖ · ‖) be a normed space
over the real field R. Let A,B ⊂ X be non-empty, convex and disjoint and assume
that A is compact and B is closed. Then there exists a functional l ∈ X∗ such that

sup
a∈A

l(a) < inf
b∈B

l(b).

Let us prove this assertion using, as suggested, the results in part (a) and in part (b).
Let r > 0 be such that Ur(A)∩B = ∅: for this very choice of r we can apply the weak
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separation theorem (part (a)) to the sets Ur(A) and B, thereby obtaining l ∈ X∗
such that

sup
a′∈Ur(A)

l(a′) ≤ inf
b∈B

l(b). (1)

But on the other hand, by virtue of what we proved in part (b) we have that

sup
a∈A

l(a) < sup
a′∈Ur(A)

l(a′) (2)

so that combining (1) with (2) the proof is complete.

Problem 2.

(a) A ⊂ X is of first category, if A = ⋃
k∈NAk with Ak nowhere dense for every

k ∈ N, i. e. (Ak)◦ = ∅.

(b) For any k ∈ N, let

Ak :=
{
x = (xn)n∈N ∈ `2

∣∣∣ ∑
n∈N

n2|xn|2 ≤ k
}
.

Suppose the elements x(m) ∈ Ak satisfy x(m) → x in `2 as m → ∞. In particular,
|x(m)

n − xn| → 0 as m→∞ for any n ∈ N. Then, for any N ∈ N

N∑
n=0

n2|xn|2 = lim
m→∞

N∑
n=0

n2|x(m)
n |

2 ≤ k.

Since N is arbitrary, we obtain x ∈ Ak. Hence, Ak ⊂ `2 is closed. Towards a
contradiction, suppose, Ak has non-empty interior. Then there exist a = (an)n∈N ∈ Ak

and some ε > 0 such that defining bn = an + sgn(an) ε
n
we have (bn)n∈N ∈ Ak. Note

that ( ε
n
)n∈N ∈ `2 with norm proportional to ε. However,

∑
n∈N

n2|bn|2 ≥
∑
n∈N

(
n2a2

n + nε2
)

=∞.

Thus, Ak is closed with empty interior, hence nowhere dense and H = ⋃
k∈NAk is of

first category.
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Problem 3.

(a) Preliminary comment: one could just present here the proof given in the lecture
notes, Beispiel 5.4.1 part ii), but I shall rather present a different argument.

We say ` : H → R is affine if there exist `0 ∈ X∗ and c ∈ R such that `(x) = `0(x) + c
for all x ∈ X. Set

AF := {` : H → R affine and ` ≤ F} , F̃ (x) = sup
`∈AF

`(x).

I claim that F (x) = F̃ (x) which means that any convex function can be represented
as supremum of the affine functions that lies below it. To check such claim, notice that
by definition of AF one has F (x) ≥ F̃ (x) for all x ∈ H and if it were F (x0) > F̃ (x0)
one would reach a contradiction by invoking the weak separation theorem to DF :=
{(x, y) ∈ H × R : y > F (x)} (convex open set) and the point (x0, F̃ (x0)) ∈ H×R, as
it precisely provides an affine function ` ∈ H∗ such that l(x0) > F̃ (x0), contradiction.
Now, pick a sequence xk

w
⇁ x and observe that by definition of weak convergence

`(xk)→ `(x) for any ` affine. We have that

lim
k→∞

`(xk) ≤ lim inf
k→∞

sup
`∈AF

`(xk)

and hence also

sup
`∈AF

lim
k→∞

`(xk) ≤ lim inf
k→∞

sup
`∈AF

`(xk)

so that finally (by the above remark)

F (x) = sup
`∈AF

`(x) = sup
`∈AF

lim
k→∞

`(xk) ≤ lim inf
k→∞

sup
`∈AF

`(xk) = lim inf
k→∞

F (xk).

(b) We want to appeal to the general existence result provided by Satz 5.4.1, which
can be stated (as far as we need) as follows: Let X be a reflexive Banach space and
let T : X → R be coercive and weakly sequentially lower semicontinuous: then there
exists x0 ∈ X such that

T (x0) = inf
x∈X

T (x).

Recalling that any Hilbert space is reflexive, it is enough to check that the functional
G : H → R is coercive and weakly sequentially lower semicontinuous. For the first
issue, we claim that in fact

lim
‖x‖→+∞

F (x)
‖x‖

= +∞,
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at which stage one just needs to observe that G(x) ≥ F (x)−C‖x‖ = ‖x‖
(

F (x)
‖x‖ − C

)
,

where we have set C = ∑N
i=1 ‖`i‖H∗ , so that indeed lim‖x‖→∞G(x) = +∞ as a

result of our claim lim‖x‖→+∞
F (x)
‖x‖ = +∞. To justify the claim, we argue as follows;

let DF := {(x, y) ∈ H × R : y > F (x)} i. e. the epigraph of the function F , and
let (x0, y0) ∈ H × R \ DF i. e. a point below the graph. By the weak separation
theorem, which is applicable since DF ⊂ H × R is open thanks to the assumption
that F is continuous, we can find ` ∈ H∗, c ∈ R such that F (x) ≥ `(x) − c, thus
F (x) ≥ −‖`‖H∗ − c which implies that F (x)/‖x‖ is bounded from below as one lets
‖x‖ → ∞: this implies that there cannot be any sequence (xk) such that ‖xk‖ → ∞
while F (xk)/‖xk‖ → −∞. This is precisely what one needs to gain the implication

lim
‖x‖→+∞

|F (x)|
‖x‖

= +∞ ⇒ lim
‖x‖→+∞

F (x)
‖x‖

= +∞.

Lastly, let us prove the lower semicontinuity of G. Using part (a) (for F ) we have
that if xk

w
⇁ x then F (x) ≤ lim infk→∞ F (xk) and for any given ` ∈ H∗ trivially (by

definition of weak convergence) `(xk)→ `(x) and thus also |`(xk)| → |`(x)| as k →∞.
Combining these two facts together gives G(x) ≤ lim infk→∞G(xk).

Problem 4.

(a) For any f ∈ L2(R;C), Tf = fg is measurable and

‖Tf‖2
L2(R;C) =

∫
R
|fg|2 dx ≤ ‖g‖2

L∞(R;C)

∫
R
|f |2 dx = ‖g‖2

L∞(R;C)‖f‖
2
L2(R;C).

In particular, Tf ∈ L2(R;C) with ‖Tf‖L2(R;C) ≤ ‖g‖L∞(R;C)‖f‖L2(R;C). As T is clearly
linear, this shows that T is a continuous linear operator with ‖T‖ ≤ ‖g‖L∞(R;C).

We claim that ‖T‖ ≥ ‖g‖L∞(R;C), which will show that ‖T‖ = ‖g‖L∞(R;C). If ‖g‖L∞(R;C)
vanishes then this is trivial, otherwise for any 0 < ε < ‖g‖L∞(R;C) the set

Aε := {x ∈ R : |g(x)| > ‖g‖L∞(R;C) − ε}

has positive measure. Assume that |Aε| < ∞: since g 6= 0 on Aε, we can take
f := g

|g|2χAε , which belongs to L2(R;C) since∫
R
|f |2 dx ≤

(
‖g‖L∞(R;C) − ε

)−2
|Aε| <∞

and moreover, being Tf = χAε ,

‖T‖2 ≥
‖Tf‖2

L2(R;C)

‖f‖2
L2(R;C)

= |Aε|
‖f‖2

L2(R;C)
≥
(
‖g‖L∞(R;C) − ε

)2
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(notice that f does not vanish a.e.). If instead |Aε| = ∞, we choose any radius
R > 0 such that Aε ∩ BR(0) has (finite) positive measure: this is possible because
|Aε| = limR→∞ |Aε ∩ BR(0)|. Then we repeat the same argument with Aε replaced
by Aε ∩ BR(0), reaching again the conclusion ‖T‖ ≥ ‖g‖L∞(R;C) − ε. Since ε was
arbitrary, the claim follows.

(b) If λ ∈ C does not belong to the essential image, then there exists ε > 0 such
that g−1(Bε(λ)) has measure zero, which means that |g(x) − λ| ≥ ε for a. e. x.
Hence, the function h(x) := (λ− g(x))−1 (defined a. e.) belongs to L∞(R;C), with
‖h‖L∞(R;C) ≤ ε−1, and the corresponding multiplication operator S : L2(R;C) →
L2(R;C), Sf := fh satisfies

S(λI − T ) = I, (λI − T )S = I.

So λI − T is invertible, i.e. λ 6∈ σ(T ).

Assume instead that λ belongs to the essential image and, for any fixed ε > 0, let
Cε := {x : |g(x)− λ| < ε}, which has positive measure. As in (a), we truncate it with
a ball BR(0) in the domain, in such a way that 0 < |Cε ∩BR(0)| <∞. Taking f to
be the characteristic function of Cε ∩BR(0), we get f ∈ L2(R;C) and

‖(λI − T )f‖2
L2(R;C)

‖f‖2
L2(R;C)

=
∫

Cε∩BR(0) |g(x)− λ|2 dx
|Cε ∩BR(0)| ≤ ε2.

Now, if λI − T were invertible, we would have

‖f‖L2(R;C) ≤ ‖(λI − T )−1‖‖(λI − T )f‖L2(R;C) ≤ ε‖(λI − T )−1‖‖f‖L2(R;C).

Thus, being ‖f‖L2(R;C) > 0, we would get 1 ≤ ε‖(λI − T )−1‖, which gives a contradic-
tion if ε is chosen small enough. So in this case λ ∈ σ(T ).

Problem 5.
Choose H = R2. Let A,B ∈ L(R2;R2) be given by

A =
(

1 0
0 0

)
, B =

(
0 0
0 1

)
.

Then,

‖A‖ = ‖B‖ = ‖A+B‖ = ‖A−B‖ = 1.

Since 2 6= 4, the parallelogram identity ‖A + B‖2 + ‖A − B‖2 = 2‖A‖2 + 2‖B‖2 is
false in L(R2;R2). Therefore, L(R2;R2) is not Hilbertean.
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Problem 6.

(a) (X, ‖·‖X) is separable if X contains a countable, dense subset. The Banach space(
L∞((0, 1)), ‖·‖L∞((0,1))

)
is not separable.

(b) (Y, ‖·‖Y ) is reflexive, if I : Y → Y ∗∗ given by (Ix)(f) = f(x) is surjective. The
Banach space

(
L1((0, 1)), ‖·‖L1((0,1))

)
is not reflexive.

(c) Given x ∈ X, let yn = Fnx ∈ Y . Then, the sequence (yn)n∈N is bounded because

‖Fnx‖Y ≤ ‖Fn‖‖x‖X ≤ C‖x‖X .

Since Y is reflexive, there exists an unbounded set Λ ⊂ N and some y ∈ Y such that
yn

w
⇁ y as Λ 3 n→∞ according to the Eberlein–Smulyan Theorem.

Since X is separable, there exists a dense subset D = {x1, x2, . . .} ⊂ X. Towards a
diagonal argument, let N ⊃ Λ1 ⊃ Λ2 ⊃ . . . be the sets as above corresponding to the
elements x1, x2, . . . ∈ D. Let Λ∞ be a diagonal sequence. Let x ∈ X and ` ∈ Y ∗ be
arbitrary. Then, for m,n ∈ Λ∞ and k ∈ N, using ‖Fn‖ ≤ C we obtain

|`(Fnx)− `(Fmx)| ≤ |`((Fn − Fm)(x− xk))|+ |`(Fn(xk))− `(Fm(xk))|
≤ 2C‖`‖Y ∗‖x− xk‖X + |`(Fn(xk))− `(Fm(xk))|.

By density of D, the index k can be chosen such that 4C‖`‖Y ∗‖x− xk‖X < ε. By the
diagonal argument, (`(Fn(xk)))n∈Λ∞ is a Cauchy sequence. Hence, also (`(Fnx))n∈Λ∞
is a Cauchy sequence. Since ` is arbitrary, (Fnx)n∈Λ∞ converges weakly.

Problem 7.
We note preliminarily that, set Πj ∈ L(H,Hj) the orthogonal projection onto Hj, we
have

vj = Πj(v) = lim
N→∞

Πj

(
N∑

`=1
v`

)
lim

N→∞

N∑
`=1

Πj(v`) ∀v ∈ H

by continuity of Πj. Moreover, being Hk ⊥ H` for k 6= `,

‖v‖2 = lim
N→∞

∥∥∥∥∥
N∑

`=1
v`

∥∥∥∥∥
2

= lim
N→∞

N∑
`=1
‖v`‖2 =

∞∑
`=1
‖v`‖2.

(⇐) Assume that Ac is compact. Since Hj 6= {0} by hypothesis, for each j ≥ 1 we
can select an element wj ∈ Hj with ‖wj‖ = cj. Let us form the sequence

(v(k))∞k=1 ⊂ H, v(k) :=
k∑

`=1
wj.
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Note that v(k) ∈ Ac and that v(k)
j = wj ∀k ≥ j. By compactness of Ac, there exists

an infinite subset Λ ⊂ N and a vector v(∞) ∈ Ac such that limΛ3k→∞ v
(k) = v(∞). But,

by continuity of Πj,

v
(∞)
j = Πj(v(∞)) = lim

Λ3k→∞
Πj(v(k)) = lim

Λ3k→∞
v

(k)
j = wj

and so

‖v(∞)‖2 =
∞∑

j=1
‖v(∞)

j ‖2 =
∞∑

j=1
‖wj‖2 =

∞∑
j=1

c2
j .

Since ‖v(∞)‖2 <∞, we deduce that c ∈ `2.

(⇒) Assume that c ∈ `2. Given a sequence (v(k))∞k=1 in Ac, we want to find a
converging subsequence. We will reach this goal by a diagonal argument: since H1 is
finite-dimensional and ‖v(k)

1 ‖ ≤ c1 for all k, we can find a subset Λ1 ⊂ N and a vector
v1,∞ ∈ H1 such that

lim
Λ13k→∞

v
(k)
1 = v1,∞, ‖v1,∞‖ ≤ c1.

Similarly, we can find Λ2 ⊂ Λ1 and v2,∞ ∈ H2 such that

lim
Λ23k→∞

v
(k)
2 = v2,∞, ‖v2,∞‖ ≤ c2,

and so on. Denoting Λ the diagonal subsequence (formed by the first element of Λ1,
the second element of Λ2 and so on), we get

lim
Λ3k→∞

v
(k)
j = vj,∞, ‖vj,∞‖ ≤ cj ∀j ≥ 1.

We now claim that v(∞) := ∑∞
j=1 vj,∞ is well-defined, i.e. that limN→∞

∑N
j=1 vj,∞

exists. Since H is complete, it suffices to show that we have a Cauchy sequence. Being∑
j c

2
j <∞, by orthogonality we get∥∥∥∥∥

n∑
j=m+1

vj,∞

∥∥∥∥∥
2

=
n∑

j=m+1
‖vj,∞‖2 ≤

∑
j>m

c2
j

for m < n, which is infinitesimal as m→∞. Note that, by uniqueness, v(∞)
j = vj,∞,

so v(∞) ∈ Ac. We now want to show that v(k) → v(∞) along the subsequence Λ. Fix
any ε > 0 and choose Nε ≥ 1 such that ∑j>Nε

c2
j ≤ ε (here we use c ∈ `2). Then

‖v(k) − v(∞)‖2 =
∞∑

j=1
‖v(k)

j − v
(∞)
j ‖2 ≤

Nε∑
j=1
‖v(k)

j − v
(∞)
j ‖2 +

∑
j>Nε

(2cj)2,

where we used ‖v(k)
j − vj,∞‖ ≤ 2cj. Since each term in the finite sum is infinitesimal

(as Λ 3 k → ∞), for k ∈ Λ large enough we get ‖v(k) − v(∞)‖2 ≤ 5ε. Since ε was
arbitrary, this proves the desired convergence.
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