Coordinator Yilin Wang

Probability Theory

Exercise Sheet 2

Exercise 2.1 Take $\Omega = \{a, b, c, d\}$, $\mathcal{A} = \mathcal{P}(\Omega)$ and $\mathcal{C} = \{\{a, b\}, \{c, d\}, \{a, c\}, \{b, d\}\}$. Consider *P* the equiprobability on Ω and *Q* the probability measure $\frac{1}{2}(\delta_a + \delta_d)$ (with δ_a the point measure at *a*, and δ_d the point measure at *d*).

- (a) Show that $\sigma(\mathcal{C}) = \mathcal{A}$, and P and Q agree on \mathcal{C} .
- (b) Show that $\{A \in \mathcal{A}; P(A) = Q(A)\}$ is not a σ -algebra.
- (c) Is \mathcal{C} a π -system?

Exercise 2.2 Let $(E_n)_{n\in\mathbb{N}}$ be a sequence of events on $(\Omega, \mathcal{A}, \mathsf{P})$ satisfying that

(i)
$$\lim_{n \to \infty} \mathsf{P}[E_n] = 0,$$
 (ii) $\sum_{n \in \mathbb{N}} \mathsf{P}[E_n \cap E_{n+1}^c] < \infty.$

Show that $\mathsf{P}[\limsup_{n\to\infty} E_n] = 0.$

Exercise 2.3 In this exercise, we will construct a countably infinite number of independent random variables, without using a product space with an infinite number of factors.

Consider $\Omega = [0, 1)$, equipped with the Borel σ -algebra and the Lebesgue measure P restricted to [0, 1). We define the random variables

$$Y_n: \Omega \to \mathbb{R}, \quad n \in \mathbb{N},$$

by

$$Y_n(\omega) := \begin{cases} 0 & \text{if } \lfloor 2^n \omega \rfloor \text{ is even,} \\ 1 & \text{if } \lfloor 2^n \omega \rfloor \text{ is odd,} \end{cases}$$

where $\lfloor x \rfloor = \max \{z \in \mathbb{Z} \mid z \leq x\}$ denotes the integer part of x. Show that Y_n , $n \in \mathbb{N}$, are independent and satisfy $P[Y_n = 0] = P[Y_n = 1] = \frac{1}{2}$.

Hint: To gain insight, consider the meaning of Y_n in terms of the binary expansion of ω . You may use the following observation, without proving it:

Let (Ω, \mathcal{A}, P) be a probability space and Y_1, Y_2, \ldots be random variables on this space, each taking values only in a countable set (that is, for each *i* there is a countable set S_i such that $P[Y_i \in S_i] = 1$). Assume that

$$P[Y_1 = z_1, Y_2 = z_2, \dots, Y_n = z_n] = \prod_{i=1}^n P[Y_i = z_i] \text{ for all } z_1, \dots, z_n \in \mathbb{R}$$
(1)

1/2

holds for all $n \ge 1$. Then, the infinite sequence of random variables $(Y_i)_{i\ge 1}$ is independent.

Submission deadline: 13:15, Oct 10.

Location: During exercise class or in the tray outside of HG E 65.

Office hours (Präsenz): Mon. and Thu., 12:00-13:00 in HG G 32.6.

Class assignment:

Students	Time & Date	Room	Assistant
An-Gr	Tue 13-14	HG F 26.5	Yilin Wang
He-Lang	Tue 13-14	ML H 41.1	Angelo Abächerli
Lanz-Sa	Tue 14-15	HG F 26.5	Vincenzo Ignazio
Sch-Zh	Tue 14-15	ML H 41.1	Lukas Gonon