Probability Theory

Exercise Sheet 3

Exercise 3.1 Let \mathcal{M} be the set of the real-valued random variables on the probability space (Ω, \mathcal{A}, P) . We define on \mathcal{M} an equivalence relation as follows:

$$X \sim Y \quad :\iff \quad P(X = Y) = 1$$

We denote by \mathcal{M}/\sim the set of equivalence classes in \mathcal{M} with respect to \sim and we denote by [X] the equivalence class of $X \in \mathcal{M}$.

(a) Show that

$$d: (\mathcal{M}/\sim) \times (\mathcal{M}/\sim) \to \mathbb{R}$$
$$([X], [Y]) \mapsto E[|X-Y| \wedge 1]$$

is a metric on \mathcal{M}/\sim .

(b) Let $(X_n)_{n\in\mathbb{N}}$ be a sequence in \mathcal{M} and let X be an element of \mathcal{M} . Show that $([X_n])_{n\in\mathbb{N}}$ converges to [X] with respect to the metric d if and only if $(X_n)_{n\in\mathbb{N}}$ converges to X in probability.

Exercise 3.2 Let X_i , $i \ge 1$, be identically distributed, integrable random variables and define $S_n = \sum_{i=1}^n X_i$ for each $n \in \mathbb{N}$. Show that:

$$\lim_{M \to \infty} \sup_{n \ge 1} E\left[\frac{|S_n|}{n} \mathbf{1}_{\left\{\frac{|S_n|}{n} > M\right\}}\right] = 0.$$

Note: This family $\left\{\frac{|S_n|}{n}, n \in \mathbb{N}\right\}$ is thus so-called "uniformly integrable". See (3.6.14) in the lecture notes. Thanks to Theorem 3.41 and the strong law of large numbers, one has that: if $X_i, i \geq 1$, are also pairwise independent, (in addition to being identically distributed as in the question), then $\frac{S_n}{n}$ converges *P*-a.s. and in L^1 towards $E[X_1]$ for $n \to \infty$.

Exercise 3.3 Let $X_n, n \ge 0$, be i.i.d. $\mathcal{N}(0, 1)$ random variables and let $t \in [0, 1]$.

(a) Show that

$$tX_0 + \sum_{n=1}^{\infty} \sqrt{2} \; \frac{\sin(n\pi t)}{n\pi} \; X_n$$

converges in L^2 and P-a.s. *Hint:* Use Theorem 1.34 and Remark 1.35 of lecture notes.

(b) Denote by B_t the limit of the series above. Show that for $0 \le t, s \le 1$,

$$E[B_t] = 0$$
 and $E[B_tB_s] = t \wedge s$,

where $t \wedge s = \min(t, s)$. *Hint:* Find an orthonormal basis of $L^2([0, 1], dx)$ (e.g. trigonometric functions) and use Parseval-Bessel identity for a Hilbert space (see, for example, Theorem 4.18 in *Real and Complex Analysis by W. Rudin*).

Submission deadline: 13:15, Oct 17.

Location: During exercise class or in the tray outside of HG E 65.

Office hours (Präsenz): Mon. and Thu., 12:00-13:00 in HG G 32.6.

Class assignment:

Students	Time & Date	Room	Assistant
An-Gr	Tue 13-14	HG F 26.5	Yilin Wang
He-Lang	Tue 13-14	ML H 41.1	Angelo Abächerli
Lanz-Sa	Tue 14-15	HG F 26.5	Vincenzo Ignazio
Sch-Zh	Tue 14-15	ML H 41.1	Lukas Gonon