Probability Theory

Exercise Sheet 7

Exercise 7.1 Polya's Urn: An urn initially contains s black and w white balls. We consider the following process. At each step a random ball is drawn from the urn, and is replaced by t balls of the same colour, for some fixed $t \ge 1$. We define the random variable Y_n as the proportion of black balls in the urn after the n-th iteration. Show that $E[Y_{n+1}|\sigma(Y_1, Y_2, \ldots, Y_n)] = Y_n$, for all $n \in \mathbb{N}$, that is, $\{Y_n\}_{n \in \mathbb{N}}$ is a martingale.

Exercise 7.2 Let X be a random variable in $L^2(\Omega, \mathcal{A}, P)$ and $\mathcal{F} \subseteq \mathcal{A}$. The conditional variance of X given \mathcal{F} is defined as $\operatorname{Var}[X|\mathcal{F}] := E[(X - E[X|\mathcal{F}])^2|\mathcal{F}]$. Prove that

- (a) $\operatorname{Var}[X|\mathcal{F}] = E[X^2|\mathcal{F}] E[X|\mathcal{F}]^2;$
- (b) $\operatorname{Var}(X) = E[\operatorname{Var}[X|\mathcal{F}]] + \operatorname{Var}[E[X|\mathcal{F}]].$
- (c) Compute Var[$X|\mathcal{F}$], where $\mathcal{F} = \sigma(A_1, A_2)$ where $\{A_1, A_2\}$ is a partition of Ω and $P(A_i) > 0$ for i = 1, 2.

Exercise 7.3

Let S be a random variable with $P[S > t] = e^{-t}$, for all t > 0. Calculate the following conditional expectations for arbitrary t > 0:

- (a) $E[S | S \land t]$, where $S \land t := \min(S, t)$;
- (b) $E\left[S \mid S \lor t\right]$, where $S \lor t := \max(S, t)$.

Submission deadline: 13:15, Nov 14.

Location: During exercise class or in the tray outside of HG E 65.

Office hours (Präsenz): Mon. and Thu., 12:00-13:00 in HG G 32.6.

Class assignment:

Students	Time & Date	Room	Assistant
An-Gr	Tue 13-14	HG F 26.5	Yilin Wang
He-Lang	Tue 13-14	ML H 41.1	Angelo Abächerli
Lanz-Sa	Tue 14-15	HG F 26.5	Vincenzo Ignazio
Sch-Zh	Tue 14-15	ML H 41.1	Lukas Gonon