Probability Theory

Exercise Sheet 8

Exercise 8.1 Let $S, T : \Omega \to \mathbb{N} \cup \{\infty\}$ be \mathcal{F}_n -stopping times. Prove or provide a counter example disproving the following statements:

- (a) S-1 is a stopping time.
- (b) S + 1 is a stopping time.
- (c) $S \wedge T$ is a stopping time.
- (d) $S \lor T$ is a stopping time.
- (e) S + T is a stopping time.

Exercise 8.2 Let $n \ge 2$, and let X_1, \ldots, X_n be i.i.d. random variables defined on a probability space (Ω, \mathcal{A}, P) .

(a) Show that for every Borel function $g : \mathbb{R}^n \to \mathbb{R}$ with $E[|g(X_1, \ldots, X_n)|] < \infty$ and any permutation π of $\{1, \ldots, n\}$,

$$E[g(X_1,...,X_n)] = E[g(X_{\pi(1)},...,X_{\pi(n)})].$$

(b) Set $S := X_1 + \ldots + X_n$ and assume that X_1 is integrable. Find a representation of $E[X_1|S]$ as a function of S. *Hint:* First show that $E[X_1|S] = E[X_2|S]$ P-a.s.

Exercise 8.3 Let Y_n , $n \ge 0$ be i.i.d. with $P[Y_0 = 1] = p$ and $P[Y_0 = 0] = 1 - p$ for some $p \in (0, 1)$. Let $\mathcal{F}_n := \sigma(Y_0, \ldots, Y_n)$ for $n \ge 0$ and define

$$T := \inf\{n \ge 0 \mid Y_n = 1\}.$$

Determine the Doob decomposition of $X_n := 1_{\{T \le n\}}, n \ge 0$. *Hint:* First check that X_n is an \mathcal{F}_n -submartingale.

Submission deadline: 13:15, Nov 21.

Location: During exercise class or in the tray outside of HG E 65.

Office hours (Präsenz): Mon. and Thu., 12:00-13:00 in HG G 32.6.

Class assignment:

Students	Time & Date	Room	Assistant
An-Gr	Tue 13-14	HG F 26.5	Yilin Wang
He-Lang	Tue 13-14	ML H 41.1	Angelo Abächerli
Lanz-Sa	Tue 14-15	HG F 26.5	Vincenzo Ignazio
Sch-Zh	Tue 14-15	ML H 41.1	Lukas Gonon