Probability Theory

Exercise Sheet 11

Exercise 11.1 Let $(X_n)_{n\geq 0}$ be a uniformly integrable family of random variables on (Ω, \mathcal{A}, P) .

(a) Assume that X_n converges to a random variable X in distribution. Show that

$$E[X_n] \xrightarrow{n \to \infty} E[X].$$

Remark: Compare to (3.6.18)–(3.6.20), p. 112 of the lecture notes.

(b) Assume that X_n converges to a random variable X in probability. Show that $X \in L^1$ and that X_n converges to X in L^1 .

Exercise 11.2 Let X_n , $n \ge 0$, be a uniformly integrable submartingale and N a stopping time.

- (a) Show that $\sup_n E[X_{N \wedge n}^+] \leq \sup_n E[X_n^+] < \infty$.
- (b) Show that X_N (where $X_N \mathbb{1}_{\{N=\infty\}} = \mathbb{1}_{\{N=\infty\}} \lim_n X_n$) is integrable.
- (c) Show that $X_{N \wedge n}$, $n \ge 0$, is a uniformly integrable submartingale.

Exercise 11.3 Let $(Y_n)_{n \in \mathbb{N}}$ be a sequence of independent, non-negative random variables with expectation 1. Consider the natural filtration $(\mathcal{F}_n)_{n \geq 0}$. We define

 $M_0 = 1, \quad M_n = Y_1 Y_2 \cdots Y_n, \text{ for } n \in \mathbb{N}.$

(a) Prove that $(M_n)_{n \in \mathbb{N}_0}$ is a non-negative martingale with respect to the filtration $(\mathcal{F}_n)_{n\geq 0}$ and there exists a random variable M_{∞} , so that $M_n \to M_{\infty}$ a.s.

Let $a_n := E[\sqrt{Y_n}].$

- (b) Show that $a_n \in (0, 1]$.
- (c) Show that if $\prod_n a_n > 0$, it holds that $M_n \to M_\infty$ in L^1 and $E[M_\infty] = 1$.
- (d) Show that if $\prod_n a_n = 0$, then $M_{\infty} = 0$ a.s.

Submission deadline: 13:15, Dec 12.

Location: During exercise class or in the tray outside of HG E 65.

Office hours (Präsenz): Mon. and Thu., 12:00-13:00 in HG G 32.6.

Class assignment:

Students	Time & Date	Room	Assistant
An-Gr	Tue 13-14	HG F 26.5	Yilin Wang
He-Lang	Tue 13-14	ML H 41.1	Angelo Abächerli
Lanz-Sa	Tue 14-15	HG F 26.5	Vincenzo Ignazio
Sch-Zh	Tue 14-15	ML H 41.1	Lukas Gonon