Mathematical Foundations for Finance

Exercise sheet 10

Please hand in your solutions until Tuesday, 28/11/2017, 18:00 into your assistant's box next to HG G 53.2.

Exercise 10.1 Let $W = (W_t)_{t \ge 0}$ be a Brownian motion defined on some filtered probability space $(\Omega, \mathcal{F}, \mathbb{F}, P)$, where $\mathbb{F} := (\mathcal{F}_t)_{t \ge 0}$ is a filtration satisfying the usual conditions. Define

$$\tau_a := \inf\{t \ge 0 \mid W_t > a\}$$

for some a > 0.

- (a) Prove that τ_a is a stopping time for all a > 0, and that we have τ_{a1} ≤ τ_{a2} P-a.s. for a₁ < a₂. Hint 1: Use that fact that if f : ℝ → ℝ is a continuous function, then if f(x) > a for some x, a ∈ ℝ, there exists a y ∈ ℚ arbitrarily close to x such that f(y) > a. Hint 2: Use that the filtration is right-continuous, i.e. if A ∈ F_{t+1/n} for all n ∈ ℕ, then A ∈ F_t.
- (b) Prove that P [τ_a < ∞] = 1 for all a > 0.
 Hint: Use the global of the iterated logarithm from Proposition V.1.2 in the lecture notes.
- (c) Show that $W_{\tau_a} = a P$ -a.s. for all a > 0 and conclude that

$$E\left[W_{\tau_{a_2}} \middle| \mathcal{F}_{\tau_{a_1}}\right] \neq W_{\tau_{a_1}}$$
 P-a.s.,

for $a_1 < a_2$, proving that the stopping theorem (Theorem IV.2.1 in the lecture notes) fails for $\tau = \tau_{a_2}$ and $\sigma = \tau_{a_1}$.

(d) Prove that $\rho_a := \sup\{t \ge 0 | W_t > a\}$ is a stopping time. What values does it take? Hint: Use that the filtration is P-complete, i.e. if P[A] = 0 for some $A \in \mathcal{F}$, then $A \in \mathcal{F}_0$.

Exercise 10.2 Let M be an RCLL local martingale null at 0 which satisfies $\sup_{0 \le s \le T} |M_t| \in L^2$ for some $T \in \mathbb{R}$.

- (a) Show that M is a square-integrable martingale on [0, T]. Hint: Dominated convergence theorem.
- (b) Let [M] be the square bracket process of M. Show that

$$E[[M]_t - [M]_s | \mathcal{F}_s] = \operatorname{Var}[M_t - M_s | \mathcal{F}_s]$$

for all $0 \leq s \leq t \leq T$.

Exercise 10.3 On a filtered probability space $(\Omega, \mathcal{F}, \mathbb{F}, P)$, consider an adapted stochastic process $X = (X_t)_{t\geq 0}$ null at 0. Assume that it is integrable and has independent stationary increments, i.e. $X_t - X_s$ is independent of \mathcal{F}_s and has the same distribution as X_{t-s} for all t > s. (In particular, this is satisfied for any *Lévy process* $L = (L_t)_{t\geq 0}$ with $E[|L_1|] < \infty$).

(a) What conditions must $(E[X_t])_{t\geq 0}$ satisfy in order to make X a (P, \mathbb{F}) -supermartingale, a (P, \mathbb{F}) -submartingale, or a (P, \mathbb{F}) -martingale?

Updated: November 21, 2017

(b) Assume from now on that X is a square-integrable $(P,\mathbb{F})\text{-martingale}.$ Prove that we have for all t,s>0 that

$$E\left[X_t^2\right] + E\left[X_s^2\right] = E\left[X_{t+s}^2\right]$$

and deduce that $\left(E\left[X_t^2\right]\right)_{t>0}$ is an increasing process.

- (c) Use (b) to prove that $E[X_t^2] = tE[X_1^2]$ for all $t \ge 0$. Hint: Prove the result first for t = 1/n for all $n \in \mathbb{N}$. Deduce that it holds true for all $t \in \mathbb{Q}_+$ and use monotonicity to conclude.
- (d) Prove that $\langle X \rangle_t = tE[X_1^2]$, for all $t \ge 0$. Hint: Use your result from (c).