Mathematical Foundations for Finance

Exercise sheet 11

Please hand in your solutions until Tuesday, 05/12/2017, 18:00 into your assistant's box next to HG G 53.2.

Exercise 11.1 Let (Ω, \mathcal{F}, P) be a probability space with a filtration $\mathbb{F} = (\mathcal{F}_t)_{t\geq 0}$ satisfying the usual conditions. Assume that \mathcal{F}_0 is *P*-trivial and consider a Brownian motion W on this space.

- (a) Prove that any continuous, adapted process H is predictable and locally bounded. Hint 1: Recall that a process X is locally bounded if there exists a sequence of stopping times (τ_n)_{n∈ℕ} increasing to infinity such that each X^{τ_n} is uniformly bounded P-a.s.
- (b) Prove that any predictable, locally bounded process H is an element of L²_{loc}(W). Hint: We saw that L²_{loc}(M) can be characterized in a nice way when M is a continuous local martingale null at 0.
- (c) Deduce that for any function $f : \mathbb{R} \to \mathbb{R}$ in C^1 , the stochastic integral $\int_0^{\cdot} f'(W_s) dW_s$ is a continuous local martingale.
- (d) Conclude using Itô's formula that f(W) for a given $f \in C^2$ is a continuous local martingale if and only if $\int_0^{\cdot} f''(W_s) ds = 0$. Hint 1: If M and N are local (P, \mathbb{F}) -martingales, then M + N is a local (P, \mathbb{F}) -martingale. Hint 2: For every continuous local martingale M null at 0 and with finite variation, we have that M = 0 P-a.s.

Exercise 11.2 Let $W = (W_t)_{t\geq 0}$ be a Brownian motion with respect to a probability measure P and a filtration $\mathbb{F} = (\mathcal{F}_t)_{t\geq 0}$. Using Itô's formula, decide for each of the following processes whether they are local (P, \mathbb{F}) -martingales or not. Which of them are even (P, \mathbb{F}) -martingales?

- (a) $X_t^{(1)} := \exp\left(\frac{1}{2}\alpha^2 t\right) \cos\left(\alpha(W_t \beta)\right), t \ge 0$, where $\alpha, \beta \in \mathbb{R}$. Hint: For the martingale property of $X^{(1)}$, look first at [0, T] for some T > 0.
- (b) $X_t^{(2)} := \sin W_t \cos W_t, t \ge 0.$
- (c) $X_t^{(3)} := W_t^p ptW_t, t \ge 0$, for $p \in \mathbb{N}$ with $p \ge 2$. *Hint:* For any T > 0, $\sup_{0 \le t \le T} W_t$ has the same distribution as $|W_T|$ and so has $-\inf_{0 \le s \le T} W_s$.

Exercise 11.3 Let $W = (W_t)_{t\geq 0}$ be a Brownian motion with respect to some probability measure P and a filtration $\mathbb{F} = (\mathcal{F}_t)_{t\geq 0}$. Use Itô's formula to write the following processes as stochastic integrals.

- (a) $X_t^{(1)} = W_t^2$.
- (b) $X_t^{(2)} = t^2 W_t^3$.
- (c) $X_t^{(3)} = \exp(mt + \sigma W_t).$
- (d) $X_t^{(4)} = \cos(t + W_t).$
- (e) $X_t^{(5)} = \log(2 + \cos(W_t t)).$
- (f) Let X and Y be two continuous real-valued (P, \mathbb{F}) -semimartingales. Define the process Z = XY. Apply Itô's formula to Z and write it as a sum of stochastic integrals.