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Exercise 14.1 We will now use the techniques that we have developed in the course in a slightly
different setting. Consider a financial market (S̃0, S̃1) on probability space (Ω,F , P ) endowed with
a filtration F = (Ft)t≥0 satisfying the usual conditions. Let W 1 and W 2 be two (P,F)-Brownian
motions with (constant) correlation ρ ∈ (−1, 1) and let the dynamics of S̃0 and S̃1 be described by
the SDEs

dS̃0
t = S̃0

t rtdt,

drt = θ(α− rt)dt+ ηdW 1
t ,

dS̃1
t = S̃1

t

(
rtdt+ σdW 2

t

)
,

where σ, η > 0 and θ, α ∈ R as well as S̃0
0 = 1, S̃1

0 > 0 and r0 ∈ R are all constant. This is the
Black–Scholes model with stochastic a interest rate.

(a) By applying Itô’s formula to some function f ∈ C2 and the continuous semimartingale S̃0,
show that the solution to the first SDE is given by

S̃0
t = exp

(∫ t

0
rsds

)
.

(b) By applying Itô’s formula to the function f(x, t) = xeθt and the continuous semimartingale
(rt, t)t≥0, show that the solution to the second SDE is given by

rt = r0e
−θt + α(1− e−θt) + ηe−θt

∫ t

0
eθsdWs.

The solution to this SDE is called the Ornstein–Uhlenbeck process and is an important process
when it comes to interest rate modeling.

(c) Show that the discounted price processes S0 := S̃0/S̃0 and S1 := S̃1/S̃0 are (P,F)-martingales,
i.e. the market (S̃0, S̃1) is arbitrage-free and we can use P as our pricing measure.

Exercise 14.2 Let W = (Wt)t≥0 be a Brownian motion with respect to a probability measure
P and a filtration F = (Ft)t≥0. We know from the lecture that if H ∈ L2

loc(W ), then
∫
HdW is

a local (P,F)-martingale. The purpose of this exercise is to study when
∫
HdW is a even a true

(P,F)-martingale. Show that
∫
HdW is a (P,F)-martingale on [0,∞) if

(a)
∫
HdW is a (P,F)-martingale on [0, T ] for every 0 ≤ T <∞.

(b)
∫
HdW has a majorant in L1(P ) on [0, T ], i.e.∣∣∣∣∫ t

0
HsdWs

∣∣∣∣ ≤ X for all t ∈ [0, T ],

where X ∈ L1(P ).
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(c) H ∈ L2(WT ), i.e. E
[∫ T

0 H2
sds
]
<∞.

Exercise 14.3 Let (Ω,F , P ) be a probability space with a Brownian motion W = (Wt)t∈[0,T ].
Let F := FW be the (augmented) filtration generated by W . Consider the discounted price process
S = (St)t∈[0,T ] with dynamics

dSt = σ(t, St)dWt, S0 > 0,

where σ : [0, T ]× R→ (0,∞) is a continuous and bounded function. One can show that S is well
defined and P is the unique EMM for S. Let h : R→ [0,∞) be a fixed continuous and bounded
function. We consider the partial differential equation (PDE){

∂
∂tv(t, x) + 1

2σ
2(t, x) ∂2

∂x2 v(t, x) = 0, x ∈ (0, T )× R,
v(T, x) = h(x), x ∈ R.

(1)

Suppose that there exists a C1,2 solution v : [0, T ]×R→ R of (1) with the additional property that∣∣∣∣σ(t, x) ∂
∂x
v(t, x)

∣∣∣∣ ≤ C(1 + |x|), (t, x) ∈ [0, T ]× R,

for some constant C > 0. Show that V ∗t := v(t, St), t ∈ [0, T ], is the price at time t of the discounted
European contingent claim h(ST ).
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