Mathematical Foundations for Finance

Exercise sheet 2

Please hand in your solutions until Tuesday, 03/10/2017, 18:00 into your assistant's box next to HG G 53.2.

Exercise 2.1 Let us assume the basic multiplicative model for our financial market $(\tilde{S}^0, \tilde{S}^1)$. We start on a probability space (Ω, \mathcal{F}, P) with random variables $r_1, \ldots, r_T > -1$ and $Y_1, \ldots, Y_T > 0$ for a $T \in \mathbb{N}$. Define for $k = 0, \ldots, T$

$$\widetilde{S}_k^0 := \prod_{j=1}^k (1+r_j), \quad \widetilde{S}_k^1 := S_0^1 \prod_{j=1}^k Y_j,$$

with a constant $S_0^1 > 0$.

- (a) A natural filtration to use in this model is the filtration generated by $Y = (Y_k)_{k=1,...,T}$ and $r = (r_k)_{k=1,...,T}$, i.e. the one given by $\mathcal{F}'_k = \sigma(Y_1, \ldots, Y_k, r_1, \ldots, r_k)$ for $k = 0, \ldots, T$. Show that if one assumes r to be predictable with respect to this filtration, then we have that $\mathcal{F}'_k = \mathcal{F}_k := \sigma(\widetilde{S}^1_0, \widetilde{S}^1_1, \ldots, \widetilde{S}^1_k)$.
 - (*Hint: if* \mathcal{A} and \mathcal{B} are two collections of subsets of Ω , then $\sigma(\mathcal{A} \cup \mathcal{B}) = \sigma(\sigma(\mathcal{A}) \cup \sigma(\mathcal{B}))$
- (b) Recall that we call a strategy $\varphi = (\varphi^0, \vartheta)$ self-financing if its discounted cost process $C(\varphi)$ is constant over time. Show that the notion of self-financing strategy does not depend on whether we work with the discounted price processes S^0 and S^1 or the undiscounted processes \tilde{S}^0 and \tilde{S}^1 , i.e. show that the discounted cost process $C(\varphi)$ is constant over time if and only if the undiscounted cost process $\tilde{C}(\varphi)$, determined by

$$\Delta \widetilde{C}(\varphi) := \widetilde{C}_{k+1}(\varphi) - \widetilde{C}_k(\varphi) = (\varphi_{k+1}^0 - \varphi_k^0)\widetilde{S}_k^0 + (\vartheta_{k+1} - \vartheta_k)\widetilde{S}_k^1,$$

is constant over time.

(c) Use the result in (b) to conclude that the notion of self-financing strategy is numeraireinvariant, i.e. that it does not matter for this definition whether the discounted price processes are defined as $S^0 := \tilde{S}^0/\tilde{S}^0$ and $S^1 := \tilde{S}^1/\tilde{S}^0$, or $\bar{S}^0 := \tilde{S}^0/\tilde{S}^1$ and $\bar{S}^1 := \tilde{S}^1/\tilde{S}^1$.

Exercise 2.2 Consider a financial market $(\tilde{S}^0, \tilde{S}^1)$ given by the following trees, where the numbers beside the branches denote transition probabilities.

$$\widetilde{S}^{0}: 1 \xrightarrow{1} 1 + r \xrightarrow{1} (1+r)(1+r)$$

$$\overset{1}{2} (1+u)(1+2u)$$

$$\widetilde{S}^{1}: 1 \xrightarrow{\frac{1}{2}} (1+u)(1+2d)$$

$$\overset{1}{2} (1+u)(1+2d)$$

$$\overset{1}{2} (1+d)(1+u)$$

$$\overset{1}{2} (1+d)(1+d)$$

Intuitively, this means that the volatility of \tilde{S}^1 increases if the stock price increases in the first period. Assume that $u, r \ge 0$ and $-0.5 < d \le 0$.

Updated: October 6, 2017

1/2

- (a) Construct for this setup a multiplicative model consisting of a probability space (Ω, \mathcal{F}, P) , a filtration $\mathbb{F} = (\mathcal{F}_k)_{k=0,1,2}$, two random variables Y_1 and Y_2 and two adapted stochastic processes \widetilde{S}^0 and \widetilde{S}^1 such that $\widetilde{S}_k^1 = \prod_{j=1}^k Y_j$ for k = 0, 1, 2.
- (b) For which values of u and d are Y_1 and Y_2 uncorrelated?
- (c) For which values of u and d are Y_1 and Y_2 independent?
- (d) For which values of u, r and d is the discounted stock process S^1 a *P*-martingale?

Exercise 2.3 Consider for a finite time horizon $T \ge 2$ a financial market $(\tilde{S}^0, \tilde{S}^1)$ consisting of a bank account and one stock defined on a probability space (Ω, \mathcal{F}, P) . Assume that $\tilde{S}_0^1 = 1$ and $\tilde{S}_k^1 > 0$ *P*-a.s. for all $k = 0, \ldots, T$. Fix thresholds $0 < \ell < 1 < u$ and define

$$\sigma(\omega) := \inf\{k = 0, \dots, T : S_k^1(\omega) \le \ell\} \land T,$$

$$\tau(\omega) := \inf\{k = \sigma(\omega), \dots, T : S_k^1(\omega) \ge u\} \land T,$$

where $\inf \emptyset = +\infty$ as usual. Moreover, for $k = 0, \dots, T$ define

$$\vartheta_k(\omega) := \mathbb{1}_{\{\sigma(\omega) < k \le \tau(\omega)\}}$$

Finally define the filtration $\mathbb{F} = (\mathcal{F}_k)_{0 \le k \le T}$ by $\mathcal{F}_0 = \{\emptyset, \Omega\}$, and $\mathcal{F}_k = \sigma(\widetilde{S}_i^1, i \le k)$.

(a) Show that σ and τ are stopping times, i.e. that for all $k = 0, \ldots, T$, we have

$$\{\sigma \leq k\}, \{\tau \leq k\} \in \mathcal{F}_k$$
 .

- (b) Show that ϑ is a predictable process with $\vartheta_0 = \vartheta_1 = 0$.
- (c) Construct φ^0 such that $\varphi = (\varphi^0, \vartheta)$ is a self-financing strategy with $V_0(\varphi) = 0$ and derive a formula for the (discounted) value process $V(\varphi)$ involving only the discounted stock price S^1 and the stopping times σ and τ .
- (d) Describe the trading strategy φ in words.