Mathematical Foundations for Finance

Exercise sheet 3

Please hand in your solutions until Tuesday, 10/10/2017, 18:00 into your assistant's box next to HG G 53.2.

Exercise 3.1 Let $(\Omega, \mathcal{F}, \mathbb{F}, P)$ be a filtered probability space with $\mathbb{F} = (\mathcal{F}_k)_{k=0,1,\dots,T}$ and $X = (X_k)_{k=0,1,\dots,T}$ a martingale with respect to \mathbb{F} and P.

- (a) Show that for a bounded, convex function $f : \mathbb{R} \to \mathbb{R}$ the process $f(X) = (f(X_k))_{k=0,1,...,T}$ is a submartingale with respect to \mathbb{F} and P. What can you say if f is not bounded? *Hint: Any convex function on* \mathbb{R}^n *is continuous on the interior of the set where it is finite.*
- (b) Let $\vartheta = (\vartheta_k)_{k=0,1,\dots,T}$ with $\vartheta_0 = 0$ be a bounded, nonnegative, \mathbb{F} -predictable process. Show that the stochastic integral process $\vartheta \cdot f(X)$ defined by

$$\vartheta \cdot f(X)_k = \sum_{j=1}^k \vartheta_j \Delta f(X_j)$$

is a submartingale with respect to \mathbb{F} and P.

Hint: We have proved in the lecture that the stochastic integral process of a similar predictable process with respect to a martingale is martingale.

- (c) Let τ be a stopping time with respect to \mathbb{F} . Show that the stopped process $f(X)^{\tau} = (f(X)_{k}^{\tau})_{k=0,1,\dots,T}$ defined by $f(X)_{k}^{\tau} = f(X_{k\wedge\tau})$ is a submartingale with respect to \mathbb{F} . Hint: Try to express the stopped process as an appropriate stochastic integral process.
- (d) Let $Y = (Y_k)_{k=0,1,\dots,T}$ be an adapted, integrable process. Show that Y is a martingale if and only if $E[Y_{k+1} | \mathcal{F}_k] = Y_k P$ -a.s. for $k = 0, 1, \dots, T 1$.

Exercise 3.2 Let $(\tilde{S}^0, \tilde{S}^1)$ be a market modeled by a *binomial model*. More precisely, let the undiscounted price processes of the assets in our market be defined by

$$\widetilde{S}_{k}^{0} = (1+r)^{k} \quad \text{for } k = 0, 1, \dots, T,$$

$$\widetilde{S}_{k+1}^{1} = Y_{k+1} \quad \text{for } k = 0, 1, \dots, T-1,$$

where the Y_k are i.i.d. random variables taking values 1 + u with probability $p \in (0, 1)$ and 1 + d with probability 1 - p. Assume furthermore that u > d > -1 and r > -1.

- (a) Suppose that $r \leq d$. Show that in this case the market $(\tilde{S}^0, \tilde{S}^1)$ admits arbitrage by explicitly constructing an arbitrage opportunity.
- (b) Suppose that $r \ge u$. Show that also in this case the market $(\tilde{S}^0, \tilde{S}^1)$ admits arbitrage by explicitly constructing an arbitrage opportunity.

Exercise 3.3 Let $(\tilde{S}^0, \tilde{S}^1)$ be a *trinomial model*. This is like a binomial model a special case of a *multinomial model*, and the distribution of Y_k under P is given by

$$Y_k = \begin{cases} 1+d & \text{with probability } p_1 \\ 1+m & \text{with probability } p_2 \\ 1+u & \text{with probability } p_3 \end{cases}$$

Updated: September 28, 2017

where p_1 , p_2 , $p_3 > 0$, $p_1 + p_2 + p_3 = 1$ and -1 < d < m < u. Here d, m and u are mnemonics for down, middle and up.

(a) Assume that d = -0.5, m = 0, u = 0.25 and r = 0. For T = 1, consider an arbitrary self-financing strategy $\varphi \cong (V_0, \theta)$. Show that if the total gain $G_1(\theta)$ at time T = 1 is nonnegative *P*-a.s., then

$$P[G_1(\theta) = 0] = 1$$

What does this property imply?

(b) Show that S^1 is arbitrage-free by constructing an *equivalent martingale measure* (EMM) for S^1 .

Hint: A probability measure Q equivalent to P on \mathcal{F}_1 can be uniquely described by a probability vector $(q_1, q_2, q_3) \in (0, 1)^3$, where $q_k = Q[Y_1 = 1 + y_k]$, k = 1, 2, 3, using the notation $y_1 := d$, $y_2 := m$ and $y_3 := u$. (A probability vector in \mathbb{R}^n , $n \in \mathbb{N}$ is a nonnegative vector in \mathbb{R}^n whose coordinates sum up to 1.)

(c) Assume now that d = -0.01, m = 0.01, u = 0.03 and r = 0.01. For T = 2, give a parametrization of all EMMs for S^1 . Hint: A probability measure Q equivalent to P on \mathcal{F}_2 can be uniquely described by four

probability vectors (q_1, q_2, q_3) , $(q_{j,1}, q_{j,2}, q_{j,3}) \in (0, 1)^3$, j = 1, 2, 3, where $q_j = Q[Y_1 = 1 + y_j]$ and $q_{j,k} = Q[Y_2 = 1 + y_k | Y_1 = 1 + y_j]$, j, k = 1, 2, 3, using the notation $y_1 := d$, $y_2 := m$ and $y_3 := u$.