Mathematical Foundations for Finance

Exercise sheet 3

Please hand in your solutions until Tuesday, 10/10/2017, 18:00 into your assistant's box next to HG G53.2.

Exercise 3.1 Let $(\Omega, \mathcal{F}, \mathbb{F}, P)$ be a filtered probability space with $\mathbb{F}=\left(\mathcal{F}_{k}\right)_{k=0,1, \ldots, T}$ and $X=$ $\left(X_{k}\right)_{k=0,1, \ldots, T}$ a martingale with respect to \mathbb{F} and P.
(a) Show that for a bounded, convex function $f: \mathbb{R} \rightarrow \mathbb{R}$ the process $f(X)=\left(f\left(X_{k}\right)\right)_{k=0,1, \ldots, T}$ is a submartingale with respect to \mathbb{F} and P. What can you say if f is not bounded? Hint: Any convex function on \mathbb{R}^{n} is continuous on the interior of the set where it is finite.
(b) Let $\vartheta=\left(\vartheta_{k}\right)_{k=0,1, \ldots, T}$ with $\vartheta_{0}=0$ be a bounded, nonnegative, \mathbb{F}-predictable process. Show that the stochastic integral process $\vartheta \bullet f(X)$ defined by

$$
\vartheta \cdot f(X)_{k}=\sum_{j=1}^{k} \vartheta_{j} \Delta f\left(X_{j}\right)
$$

is a submartingale with respect to \mathbb{F} and P.
Hint: We have proved in the lecture that the stochastic integral process of a similar predictable process with respect to a martingale is martingale.
(c) Let τ be a stopping time with respect to \mathbb{F}. Show that the stopped process $f(X)^{\tau}=$ $\left(f(X)_{k}^{\tau}\right)_{k=0,1, \ldots, T}$ defined by $f(X)_{k}^{\tau}=f\left(X_{k \wedge \tau}\right)$ is a submartingale with respect to \mathbb{F}.
Hint: Try to express the stopped process as an appropriate stochastic integral process.
(d) Let $Y=\left(Y_{k}\right)_{k=0,1, \ldots, T}$ be an adapted, integrable process. Show that Y is a martingale if and only if $E\left[Y_{k+1} \mid \mathcal{F}_{k}\right]=Y_{k} P$-a.s. for $k=0,1, \ldots, T-1$.

Exercise 3.2 Let $\left(\widetilde{S}^{0}, \widetilde{S}^{1}\right)$ be a market modeled by a binomial model. More precisely, let the undiscounted price processes of the assets in our market be defined by

$$
\begin{aligned}
\widetilde{S}_{k}^{0}=(1+r)^{k} & \text { for } k=0,1, \ldots, T \\
\frac{\widetilde{S}_{k+1}^{1}}{\widetilde{S}_{k}^{1}}=Y_{k+1} & \text { for } k=0,1, \ldots, T-1
\end{aligned}
$$

where the Y_{k} are i.i.d. random variables taking values $1+u$ with probability $p \in(0,1)$ and $1+d$ with probability $1-p$. Assume furthermore that $u>d>-1$ and $r>-1$.
(a) Suppose that $r \leq d$. Show that in this case the market $\left(\widetilde{S}^{0}, \widetilde{S}^{1}\right)$ admits arbitrage by explicitly constructing an arbitrage opportunity.
(b) Suppose that $r \geq u$. Show that also in this case the market ($\widetilde{S}^{0}, \widetilde{S}^{1}$) admits arbitrage by explicitly constructing an arbitrage opportunity.

Exercise 3.3 Let $\left(\widetilde{S}^{0}, \widetilde{S}^{1}\right)$ be a trinomial model. This is like a binomial model a special case of a multinomial model, and the distribution of Y_{k} under P is given by

$$
Y_{k}= \begin{cases}1+d & \text { with probability } p_{1} \\ 1+m & \text { with probability } p_{2} \\ 1+u & \text { with probability } p_{3}\end{cases}
$$

where $p_{1}, p_{2}, p_{3}>0, p_{1}+p_{2}+p_{3}=1$ and $-1<d<m<u$. Here d, m and u are mnemonics for down, middle and up.
(a) Assume that $d=-0.5, m=0, u=0.25$ and $r=0$. For $T=1$, consider an arbitrary self-financing strategy $\varphi \widehat{=}\left(V_{0}, \theta\right)$. Show that if the total gain $G_{1}(\theta)$ at time $T=1$ is nonnegative P-a.s., then

$$
P\left[G_{1}(\theta)=0\right]=1
$$

What does this property imply?
(b) Show that S^{1} is arbitrage-free by constructing an equivalent martingale measure (EMM) for S^{1}.
Hint: A probability measure Q equivalent to P on \mathcal{F}_{1} can be uniquely described by a probability vector $\left(q_{1}, q_{2}, q_{3}\right) \in(0,1)^{3}$, where $q_{k}=Q\left[Y_{1}=1+y_{k}\right], k=1,2,3$, using the notation $y_{1}:=d$, $y_{2}:=m$ and $y_{3}:=u$. (A probability vector in $\mathbb{R}^{n}, n \in \mathbb{N}$ is a nonnegative vector in \mathbb{R}^{n} whose coordinates sum up to 1.)
(c) Assume now that $d=-0.01, m=0.01, u=0.03$ and $r=0.01$. For $T=2$, give a parametrization of all EMMs for S^{1}.
Hint: A probability measure Q equivalent to P on \mathcal{F}_{2} can be uniquely described by four probability vectors $\left(q_{1}, q_{2}, q_{3}\right)$, $\left(q_{j, 1}, q_{j, 2}, q_{j, 3}\right) \in(0,1)^{3}, j=1,2,3$, where $q_{j}=Q\left[Y_{1}=1+y_{j}\right]$ and $q_{j, k}=Q\left[Y_{2}=1+y_{k} \mid Y_{1}=1+y_{j}\right], j, k=1,2,3$, using the notation $y_{1}:=d, y_{2}:=m$ and $y_{3}:=u$.

