Mathematical Foundations for Finance

Exercise sheet 5

Please hand in your solutions until Tuesday, 24/10/2017, 18:00 into your assistant's box next to HG G 53.2.

Exercise 5.1 Let (Ω, \mathcal{F}, P) be a probability space endowed with the filtration $\mathbb{F} = (\mathcal{F}_k)_{k=0,1,\dots,T}$ and let \mathcal{F}_0 be trivial. Let $X = (X_k)_{k=0,1,\dots,T}$ be a local martingale and $\vartheta = (\vartheta_k)_{k=0,1,\dots,T}$ a real-valued predictable process.

- (a) Show that if X is bounded from below, then X is a supermartingale. *Hint: Fatou's lemma.*
- (b) Is the stochastic integral process $\vartheta \cdot X$ also a supermartingale? Why or why not?

Exercise 5.2 Consider on a probability space (Ω, \mathcal{F}, P) a random variable X which is uniformly distributed on (0, 1). Let $Y = (Y_k)_{k=0,1,2}$ be the process given by

$$Y_0 = 0$$
, $Y_1 = X - \frac{1}{2}$, and $Y_2 = X - \frac{1}{2} + \frac{B}{X^2}$

for some random variable B independent of X and such that P[B=1] = P[B=-1] = 1/2. Finally define the filtration $\mathbb{F} = (\mathcal{F}_k)_{k=0,1,2}$ by $\mathcal{F}_k = \sigma(Y_i, i \leq k)$.

- (a) Prove that Y is not a martingale. *Hint: There is an integrability issue.*
- (b) Consider the sequence $(\tau_n)_{n\in\mathbb{N}}$ given by $\tau_n := \mathbb{1}_{\{X\geq 1/n\}} + 1$. Show that it forms a sequence of stopping times increasing to 2 with $P[\tau_n = 2] \to 1$ as $n \to \infty$.
- (c) Prove that Y is a local martingale by showing that $(\tau_n)_{n \in \mathbb{N}}$ can be chosen as localizing sequence.

Exercise 5.3 We say that the market $(\Omega, \mathcal{F}, \mathbb{F}, P, S^0, S^1)$, or shortly just S, satisfies (NA') if there exist no self-financing strategies $\varphi \cong (0, \vartheta)$ with zero initial wealth (including non-admissible ones) such that $V_T(\varphi) \ge 0$ *P*-a.s. and $P[V_T(\varphi) > 0] > 0$. This is like (NA) except that we drop the requirement of admissibility of $\varphi \cong (0, \vartheta)$. Prove that $\neg(NA') \implies \neg(NA)$ (the contraposition of $(NA) \implies (NA')$) using the steps below.

- (a) First show that if we restrict ourselves to the class of self-financing (not necessarily admissible strategies) with $G(\vartheta) \ge 0$, then we indeed have $\neg(NA') \implies \neg(NA)$.
- (b) Now suppose that we have a strategy $\varphi \cong (0, \vartheta)$ such that $P[G_k(\vartheta) < 0] > 0$ for some $k \in \{1, \ldots, T\}$. Modify the strategy φ appropriately so that $G(\vartheta) \ge 0$. This puts us into the setting of (a) and concludes the proof.
- (c) Explain why this also gives us that $(NA) \implies (NA')$.