Mathematical Foundations for Finance

Exercise sheet 5

Please hand in your solutions until Tuesday, 24/10/2017, 18:00 into your assistant's box next to HG G53.2.

Exercise 5.1 Let (Ω, \mathcal{F}, P) be a probability space endowed with the filtration $\mathbb{F}=\left(\mathcal{F}_{k}\right)_{k=0,1 \ldots, T}$ and let \mathcal{F}_{0} be trivial. Let $X=\left(X_{k}\right)_{k=0,1 \ldots, T}$ be a local martingale and $\vartheta=\left(\vartheta_{k}\right)_{k=0,1, \ldots, T}$ a real-valued predictable process.
(a) Show that if X is bounded from below, then X is a supermartingale.

Hint: Fatou's lemma.
(b) Is the stochastic integral process $\vartheta \cdot X$ also a supermartingale? Why or why not?

Exercise 5.2 Consider on a probability space (Ω, \mathcal{F}, P) a random variable X which is uniformly distributed on $(0,1)$. Let $Y=\left(Y_{k}\right)_{k=0,1,2}$ be the process given by

$$
Y_{0}=0, \quad Y_{1}=X-\frac{1}{2}, \quad \text { and } \quad Y_{2}=X-\frac{1}{2}+\frac{B}{X^{2}}
$$

for some random variable B independent of X and such that $P[B=1]=P[B=-1]=1 / 2$. Finally define the filtration $\mathbb{F}=\left(\mathcal{F}_{k}\right)_{k=0,1,2}$ by $\mathcal{F}_{k}=\sigma\left(Y_{i}, i \leq k\right)$.
(a) Prove that Y is not a martingale.

Hint: There is an integrability issue.
(b) Consider the sequence $\left(\tau_{n}\right)_{n \in \mathbb{N}}$ given by $\tau_{n}:=\mathbb{1}_{\{X \geq 1 / n\}}+1$. Show that it forms a sequence of stopping times increasing to 2 with $P\left[\tau_{n}=2\right] \rightarrow 1$ as $n \rightarrow \infty$.
(c) Prove that Y is a local martingale by showing that $\left(\tau_{n}\right)_{n \in \mathbb{N}}$ can be chosen as localizing sequence.

Exercise 5.3 We say that the market $\left(\Omega, \mathcal{F}, \mathbb{F}, P, S^{0}, S^{1}\right)$, or shortly just S, satisfies $\left(N A^{\prime}\right)$ if there exist no self-financing strategies $\varphi \widehat{=}(0, \vartheta)$ with zero initial wealth (including non-admissible ones) such that $V_{T}(\varphi) \geq 0 P$-a.s. and $P\left[V_{T}(\varphi)>0\right]>0$. This is like $(N A)$ except that we drop the requirement of admissibility of $\varphi \widehat{=}(0, \vartheta)$. Prove that $\neg\left(N A^{\prime}\right) \Longrightarrow \neg(N A)$ (the contraposition of $\left.(N A) \Longrightarrow\left(N A^{\prime}\right)\right)$ using the steps below.
(a) First show that if we restrict ourselves to the class of self-financing (not necessarily admissible strategies) with $G(\vartheta) \geq 0$, then we indeed have $\neg\left(N A^{\prime}\right) \Longrightarrow \neg(N A)$.
(b) Now suppose that we have a strategy $\varphi \widehat{=}(0, \vartheta)$ such that $P\left[G_{k}(\vartheta)<0\right]>0$ for some $k \in\{1, \ldots, T\}$. Modify the strategy φ appropriately so that $G(\vartheta) \geq 0$. This puts us into the setting of (a) and concludes the proof.
(c) Explain why this also gives us that $(N A) \Longrightarrow\left(N A^{\prime}\right)$.

