Mathematical Foundations for Finance

Exercise sheet 6

Please hand in your solutions until Tuesday, 31/10/2017, 18:00 into your assistant's box next to HG G 53.2.

Exercise 6.1 Consider a financial market in finite discrete time on a filtered probability space $(\Omega, \mathcal{F}, \mathbb{F}, P)$ with undiscounted prices \widetilde{S}^0 , \widetilde{S} and discounted prices $1, S = \widetilde{S}/\widetilde{S}^0$. An arbitrage opportunity in the undiscounted market is an admissible self-financing strategy φ with $\widetilde{V}_0(\varphi) = 0$, $\widetilde{V}_T(\varphi) \geq 0$ P-a.s. and $P\left[\widetilde{V}_T(\varphi) > 0\right] > 0$.

- (a) Show that any arbitrage opportunity in the undiscounted market is an arbitrage opportunity in the discounted market (as defined in the lecture notes), and vice versa. So (\tilde{S}^0, \tilde{S}) is arbitrage-free if an only if (S^0, S) is.
- (b) Construct an example where \widetilde{S} admits an EMM, but is not arbitrage-free. Does S then admit an EMM? What can you say about \widetilde{S}^0 for any such example?
- (c) In your example, construct explicitly an arbitrage opportunity for the undiscounted market.
- (d) Try to provide some intuition behind the existence of an EMM for \widetilde{S} not implying (NA) when we know that the existence of an EMM for S does.

Exercise 6.2 Let $(\Omega, \mathcal{F}, \mathbb{F}, P, \widetilde{S}^0, \widetilde{S}^1)$ be our canonical setup for a one-period trinomial model in which the evolution of $(\widetilde{S}^0, \widetilde{S}^1)$ is given by

$$\widetilde{S}_{0}^{1} = S_{0}^{1} = 80, \quad \widetilde{S}_{1}^{1} = \begin{cases} 120 & \text{with probability } p_{1} = 0.2, \\ 90 & \text{with probability } p_{2} = 0.3, \\ 60 & \text{with probability } p_{3} = 0.5 \end{cases}$$
 $\widetilde{S}_{0}^{0} = 1, \quad \widetilde{S}_{1}^{0} = 1 + 0.05.$

- (a) Check if the market is arbitrage-free by finding at least one EMM for $S^1 = \widetilde{S}^1/\widetilde{S}^0$.
- (b) Find the set of all EMMs for S^1 .
- (c) Compute $E_Q\left[\frac{\widetilde{C}}{1+0.05}\right]$, where \widetilde{C} is the (undiscounted) payoff of a European call option with maturity T=1 and strike price $\widetilde{K}=80$, i.e. $\widetilde{C}(\omega)=(\widetilde{S}_1^1(\omega)-80)^+$.
- (d) Determine whether \widetilde{C} as given in (c) is attainable.
- (e) Find the set of all attainable payoffs $\widetilde{H} \in L^0_+(\mathcal{F}_T)$. Hint: Every payoff is characterized by the values it takes on the atoms of \mathcal{F}_T . The set of all attainable payoffs can be identified with the set of solutions to a linear system.

Exercise 6.3 Consider the discounted market $(\Omega, \mathcal{F}, \mathbb{F}, P, 1, S^1)$ and assume that the stock price process is adapted to \mathbb{F} . Following points (a)–(c), show that $P_e(S^1)$, the set of all EMMs for S^1 , is convex, i.e. that for all $Q_1, Q_2 \in P_e(S^1)$, the map $Q^{\lambda} : \mathcal{F} \to \mathbb{R}$ given by

$$Q^{\lambda}[A] = \lambda Q_1[A] + (1 - \lambda)Q_2[A]$$
 for $A \in \mathcal{F}$

is an EMM for S^1 for all $\lambda \in [0, 1]$.

- (a) Show that Q^{λ} is a probability measure and that it is equivalent to P for all $\lambda \in [0,1]$.
- (b) Fix a $\lambda \in [0, 1]$. By the Radon–Nikodým theorem (see page 40 in the lecture notes), since Q^{λ} is a probability measures equivalent to P, there exists a density $\mathcal{D}^{\lambda} := \frac{dQ^{\lambda}}{dP}$ such that

$$Q^{\lambda}[A] = E\left[\mathcal{D}^{\lambda} \mathbb{1}_A\right] \quad \forall \ A \in \mathcal{F}.$$

Write \mathcal{D}^{λ} as function of $\mathcal{D}^{i} := \frac{dQ_{i}}{dP}$ for i = 1, 2, and deduce the form of the density process of Q^{λ} with respect to P.

(c) Conclude that Q^{λ} is an equivalent martingale measure for S^1 for each $\lambda \in [0,1]$.