Mathematical Foundations for Finance

Exercise sheet 7

Please hand in your solutions until Tuesday, 07/11/2017, 18:00 into your assistant's box next to HG G 53.2.

Exercise 7.1 Let (Ω, \mathcal{F}, P) be a probability space endowed with a filtration $\mathbb{F}=\left(\mathcal{F}_{k}\right)_{k=0,1, \ldots, T}$, and let τ be an \mathbb{F}-stopping time. We define

$$
\mathcal{F}_{\tau}:=\left\{A \in \mathcal{F}: A \cap\{\tau \leq k\} \in \mathcal{F}_{k} \text { for all } k=0,1, \ldots, T\right\} .
$$

(a) Show that \mathcal{F}_{τ} is a σ-algebra.
(b) Show that if we set $\tau \equiv k_{0}$ for a fixed $k_{0} \in\{0,1, \ldots, T\}$, we have that $\mathcal{F}_{\tau}=\mathcal{F}_{k_{0}}$.
(c) Show that for a random variable $Y \in L_{+}^{0}(\mathcal{F})$, we have that

$$
E\left[Y \mid \mathcal{F}_{\tau}\right] \mathbb{1}_{\{\tau=k\}}=E\left[Y \mid \mathcal{F}_{k}\right] \mathbb{1}_{\{\tau=k\}} P \text {-a.s. for all } k \in\{0,1, \ldots, T\}
$$

i.e. that $E\left[Y \mid \mathcal{F}_{\tau}\right]=E\left[Y \mid \mathcal{F}_{k}\right] P$-a.s. on the set $\{\tau=k\}$ or, equivalently,

$$
E\left[Y \mid \mathcal{F}_{\tau}\right]=\sum_{k=0}^{T} \mathbb{1}_{\{\tau=k\}} E\left[Y \mid \mathcal{F}_{k}\right] P \text {-a.s. }
$$

Exercise 7.2 Let $\left(\widetilde{S}^{0}, \widetilde{S}^{1}\right)$ be an arbitrage-free financial market with time horizon T and assume that the bank account process $\widetilde{S}^{0}=\left(\widetilde{S}_{k}^{0}\right)_{k=0,1, \ldots, T}$ is given by $\widetilde{S}_{k}^{0}=(1+r)^{k}$ for a constant $r \geq 0$. Denote the set of all EMMs for S^{1} by $\mathbb{P}_{e}\left(S^{1}\right)$. Fix a $\widetilde{K}>0$. The undiscounted payoff of a European call option on \widetilde{S}^{1} with strike \widetilde{K} and maturity $k \in\{1, \ldots, T\}$ is denoted by \widetilde{C}_{k}^{E} and given by

$$
\widetilde{C}_{k}^{E}=\left(\widetilde{S}_{k}^{1}-\widetilde{K}\right)^{+}
$$

whereas the undiscounted payoff of an Asian call option on \widetilde{S}^{1} with strike \widetilde{K} and maturity $k \in\{1, \ldots, T\}$ is denoted by \widetilde{C}_{k}^{A} and given by

$$
\widetilde{C}_{k}^{A}:=\left(\frac{1}{k} \sum_{j=1}^{k} \widetilde{S}_{j}^{1}-\widetilde{K}\right)^{+}
$$

(a) Fix a $Q \in \mathbb{P}_{e}\left(S^{1}\right)$ and show that the function $\{1, \ldots, T\} \rightarrow \mathbb{R}_{+}, k \mapsto E_{Q}\left[\frac{\widetilde{C}_{k}^{E}}{\widetilde{S}_{k}^{0}}\right]$ is increasing. Hint: Use Jensen's inequality for conditional expectations.
(b) Fix a $Q \in \mathbb{P}_{e}\left(S^{1}\right)$ and show that for all $k=1, \ldots, T$, we have

$$
E_{Q}\left[\frac{\widetilde{C}_{k}^{A}}{\widetilde{S}_{k}^{0}}\right] \leq \frac{1}{k} \sum_{j=1}^{k} E_{Q}\left[\frac{\widetilde{C}_{j}^{E}}{\widetilde{S}_{j}^{0}}\right]
$$

(c) Fix a $Q \in \mathbb{P}_{e}\left(S^{1}\right)$ and deduce that for all $k=1, \ldots, T$, we have

$$
E_{Q}\left[\frac{\widetilde{C}_{k}^{A}}{\widetilde{S}_{k}^{0}}\right] \leq E_{Q}\left[\frac{\widetilde{C}_{k}^{E}}{\widetilde{S}_{k}^{0}}\right]
$$

Interpret this inequality.

Exercise 7.3 Let $\left(\widetilde{S}^{0}, \widetilde{S}^{1}\right)$ follow a binomial model with $\widetilde{S}_{0}^{1}=1, u>r>d>-1$ and $T \in \mathbb{N}$. Denote by $\left(\widehat{S}^{0}, \widehat{S}^{1}\right)$ the market discounted with \widetilde{S}^{1}, i.e.

$$
\widehat{S}^{0}:=\frac{\widetilde{S}^{0}}{\widetilde{S}^{1}} \quad \text { and } \quad \widehat{S}^{1}:=\frac{\widetilde{S}^{1}}{\widetilde{S}^{1}} \equiv 1
$$

(a) Show that there exists a unique equivalent martingale measure $Q^{* *}$ for \widehat{S}^{0}.
(b) Let Q^{*} be the unique equivalent martingale measure for $S^{1}=\widetilde{S}^{1} / \widetilde{S}^{0}$. Show that the density of $Q^{* *}$ with respect to Q^{*} on \mathcal{F}_{T} is given by

$$
\frac{\mathrm{d} Q^{* *}}{\mathrm{~d} Q^{*}}=S_{T}^{1}
$$

(c) Show that for an undiscounted payoff $\widetilde{H} \in L_{+}^{0}\left(\mathcal{F}_{T}\right)$, we have

$$
\widetilde{S}_{k}^{0} E_{Q^{*}}\left[\left.\frac{\widetilde{H}}{\widetilde{S}_{T}^{0}} \right\rvert\, \mathcal{F}_{k}\right]=\widetilde{S}_{k}^{1} E_{Q^{* *}}\left[\left.\frac{\widetilde{H}}{\widetilde{S}_{T}^{1}} \right\rvert\, \mathcal{F}_{k}\right], \quad k=0, \ldots, T
$$

This formula shows that the martingale pricing method is invariant under a so-called change of numéraire.
Hint: Use Bayes' formula (Lemma II.3.1) in the lecture notes.

