Mathematical Foundations for Finance

Exercise sheet 7

Please hand in your solutions until Tuesday, 07/11/2017, 18:00 into your assistant's box next to HG G 53.2.

Exercise 7.1 Let (Ω, \mathcal{F}, P) be a probability space endowed with a filtration $\mathbb{F} = (\mathcal{F}_k)_{k=0,1,\dots,T}$, and let τ be an \mathbb{F} -stopping time. We define

$$\mathcal{F}_{\tau} := \{ A \in \mathcal{F} : A \cap \{ \tau \le k \} \in \mathcal{F}_k \text{ for all } k = 0, 1, \dots, T \}.$$

- (a) Show that \mathcal{F}_{τ} is a σ -algebra.
- (b) Show that if we set $\tau \equiv k_0$ for a fixed $k_0 \in \{0, 1, \dots, T\}$, we have that $\mathcal{F}_{\tau} = \mathcal{F}_{k_0}$.
- (c) Show that for a random variable $Y \in L^0_+(\mathcal{F})$, we have that

$$E[Y | \mathcal{F}_{\tau}] \mathbb{1}_{\{\tau=k\}} = E[Y | \mathcal{F}_{k}] \mathbb{1}_{\{\tau=k\}} \text{ P-a.s. for all } k \in \{0, 1, \dots, T\},$$

i.e. that $E[Y | \mathcal{F}_{\tau}] = E[Y | \mathcal{F}_k]$ *P*-a.s. on the set $\{\tau = k\}$ or, equivalently,

$$E[Y | \mathcal{F}_{\tau}] = \sum_{k=0}^{T} \mathbb{1}_{\{\tau=k\}} E[Y | \mathcal{F}_{k}] \quad P\text{-a.s.}$$

Exercise 7.2 Let $(\tilde{S}^0, \tilde{S}^1)$ be an *arbitrage-free* financial market with time horizon T and assume that the bank account process $\tilde{S}^0 = (\tilde{S}^0_k)_{k=0,1,\dots,T}$ is given by $\tilde{S}^0_k = (1+r)^k$ for a constant $r \ge 0$. Denote the set of all EMMs for S^1 by $\mathbb{P}_e(S^1)$. Fix a $\tilde{K} > 0$. The undiscounted payoff of a *European call option* on \tilde{S}^1 with strike \tilde{K} and maturity $k \in \{1, \dots, T\}$ is denoted by \tilde{C}^E_k and given by

$$\widetilde{C}_k^E = \left(\widetilde{S}_k^1 - \widetilde{K}\right)^+,$$

whereas the undiscounted payoff of an Asian call option on \widetilde{S}^1 with strike \widetilde{K} and maturity $k \in \{1, \ldots, T\}$ is denoted by \widetilde{C}_k^A and given by

$$\widetilde{C}_k^A := \left(\frac{1}{k} \sum_{j=1}^k \widetilde{S}_j^1 - \widetilde{K}\right)^+.$$

- (a) Fix a $Q \in \mathbb{P}_e(S^1)$ and show that the function $\{1, \ldots, T\} \to \mathbb{R}_+, k \mapsto E_Q\left\lfloor \frac{\widetilde{C}_k^E}{\widetilde{S}_k^0} \right\rfloor$ is increasing. *Hint: Use Jensen's inequality for conditional expectations.*
- (b) Fix a $Q \in \mathbb{P}_e(S^1)$ and show that for all $k = 1, \ldots, T$, we have

$$E_Q\left[\frac{\widetilde{C}_k^A}{\widetilde{S}_k^0}\right] \le \frac{1}{k} \sum_{j=1}^k E_Q\left[\frac{\widetilde{C}_j^E}{\widetilde{S}_j^0}\right].$$

(c) Fix a $Q \in \mathbb{P}_e(S^1)$ and deduce that for all k = 1, ..., T, we have

$$E_Q\left[\frac{\widetilde{C}_k^A}{\widetilde{S}_k^0}\right] \le E_Q\left[\frac{\widetilde{C}_k^E}{\widetilde{S}_k^0}\right].$$

Interpret this inequality.

Updated: October 26, 2017

Exercise 7.3 Let $(\tilde{S}^0, \tilde{S}^1)$ follow a binomial model with $\tilde{S}_0^1 = 1$, u > r > d > -1 and $T \in \mathbb{N}$. Denote by (\hat{S}^0, \hat{S}^1) the market discounted with \tilde{S}^1 , i.e.

$$\widehat{S}^0 := rac{\widetilde{S}^0}{\widetilde{S}^1}$$
 and $\widehat{S}^1 := rac{\widetilde{S}^1}{\widetilde{S}^1} \equiv 1$.

- (a) Show that there exists a unique equivalent martingale measure Q^{**} for \hat{S}^0 .
- (b) Let Q^* be the unique equivalent martingale measure for $S^1 = \tilde{S}^1 / \tilde{S}^0$. Show that the density of Q^{**} with respect to Q^* on \mathcal{F}_T is given by

$$\frac{\mathrm{d}Q^{**}}{\mathrm{d}Q^*} = S_T^1.$$

(c) Show that for an *undiscounted* payoff $\widetilde{H} \in L^0_+(\mathcal{F}_T)$, we have

$$\widetilde{S}_k^0 E_{Q^*} \left[\frac{\widetilde{H}}{\widetilde{S}_T^0} \middle| \mathcal{F}_k \right] = \widetilde{S}_k^1 E_{Q^{**}} \left[\frac{\widetilde{H}}{\widetilde{S}_T^1} \middle| \mathcal{F}_k \right], \quad k = 0, \dots, T.$$

This formula shows that the martingale pricing method is invariant under a so-called *change of numéraire*.

Hint: Use Bayes' formula (Lemma II.3.1) in the lecture notes.