Mathematical Foundations for Finance

Exercise sheet 8

Please hand in your solutions until Tuesday, 14/11/2017, 18:00 into your assistant's box next to HG G 53.2.

Exercise 8.1 Let $W = (W_t)_{t \ge 0}$ be a Brownian motion (BM) defined on some probability space (Ω, \mathcal{F}, P) (without filtration). Show that

- (a) $W^1 := -W$ is a BM.
- (b) $W_t^2 := W_{T+t} W_T, t \ge 0$, is a BM for any $T \in (0, \infty)$.
- (c) $W^3 := \alpha B + \sqrt{1 \alpha^2} B'$ is a BM, where B and B' are two independent BMs and $\alpha \in [0, 1]$.
- (d) Show that the independence of B and B' in (c) cannot be omitted, i.e., if B and B' are not independent, then W^3 need not be a BM. Give two examples.

Exercise 8.2 Let $(\Pi_n)_{n \in \mathbb{N}}$ be a sequence of refining partitions of $[a, b] \subseteq \mathbb{R}$ (in the sense that $\Pi_n \subseteq \Pi_{n+1}$ for all $n \in \mathbb{N}$) with $|\Pi_n| \to 0$ as $n \to \infty$. Let p > 0. We define for a function $f : \mathbb{R} \to \mathbb{R}$ its *p*-variation on [a, b] along the sequence $(\Pi_n)_{n \in \mathbb{N}}$ as

$$V_p^{(a,b)}(f) := \lim_{n \to \infty} \sum_{t_i \in \Pi_n} |f(t_i) - f(t_{i-1})|^p,$$

assuming that the limit exists. Assume additionally that f is continuous on [a, b].

- (a) Show that if $V_{p^*}^{(a,b)}(f)$ is finite and non-zero for some $p^* > 0$, then $V_p^{(a,b)}(f) = \infty$ for all $p < p^*$. *Hint: Make sure to use the continuity of* f. Use also that every function $f : \mathbb{R} \to \mathbb{R}$ that is continuous on a closed and bounded interval [a, b] is also uniformly continuous on [a, b].
- (b) Show that if $V_{p^*}^{(a,b)}(f)$ is finite and non-zero for some $p^* > 0$, then $V_p^{(a,b)}(f) = 0$ for all $p > p^*$.

Exercise 8.3 Let $W = (W_t)_{t\geq 0}$ be a Brownian motion defined on some sufficiently rich filtered probability space $(\Omega, \mathcal{F}, \mathbb{F}, P)$, where $\mathbb{F} := (\mathcal{F}_t)_{t\geq 0}$ is a filtration satisfying the usual conditions.

- (a) Let $f : \mathbb{R} \to \mathbb{R}$ be an arbitrary continuous convex function. Show that if the stochastic process $(f(W_t))_{t\geq 0}$ is integrable, then it is a (P, \mathbb{F}) -submartingale. Hint: We have done something similar in discrete time.
- (b) Given a (P, \mathbb{F}) -martingale $(M_t)_{t>0}$ and a measurable function $g: \mathbb{R}_+ \to \mathbb{R}$, the process

$$(M_t + g(t))_{t>0}$$

is a (P, \mathbb{F}) -supermartingale if and only if g is decreasing, and a (P, \mathbb{F}) -submartingale if and only if g is increasing.

(c) Show that the following stochastic processes are (P, \mathbb{F}) -submartingales but not martingales:

(ii) $e^{\alpha W}$ for any $\alpha \in \mathbb{R}$.

⁽i) W^2 ,

Hint: Use the result from (a) and (b), respectively.

(d) Show that any (P, F)-local martingale which is null at 0 and uniformly bounded from below is a (P, F)-supermartingale.
Hint: We have done this in discrete time already.