Non-Life Insurance: Mathematics and Statistics

Exercise sheet 10

Exercise 10.1 Tariffication Methods (R Exercise)

Suppose that a car insurance portfolio of an insurance company has been divided according to two tariff criteria:

- vehicle type: {passenger car, delivery van, truck} = $\{1,2,3\}$
- driver age : $\{21-30 \text{ years}, 31-40 \text{ years}, 41-50 \text{ years}, 51-60 \text{ years}\} = \{1,2,3,4\}$

For simplicity, we set the number of policies $v_{i,j} = 1$ for all risk classes $(i, j), 1 \le i \le 3, 1 \le j \le 4$. Moreover, assume that we observed the following claim amounts

	21-30y	31-40y	41-50y	51-60y
passenger car	2'000	1'800	1'500	1'600
delivery van	2'200	1'600	1'400	1'400
truck	2'500	2'000	1'700	1'600

and that we work with a multiplicative tariff structure.

- (a) Apply the method of Bailey & Simon in order to calculate the tariffs. Hint: In order to get a unique solution, set $\mu = \chi_{1,1} = 1$.
- (b) Apply the method of Bailey & Jung (i.e. the method of total marginal sums) in order to calculate the tariffs.
 Used to an endow to protect a part of an endow to protect and the set of the set

Hint: In order to get a unique solution, set $\mu = \chi_{1,1} = 1$.

(c) Determine the design matrix Z of the log-linear regression model and write an R-Code that applies the MLE method in the Gaussian approximation framework. Discuss the output. Is there statistical evidence that the classification into different types of vehicles could be omitted?

Hint: In order to get a unique solution, set $\beta_{1,1} = \beta_{2,1} = 0$.

(d) Compare the results found in parts (a) - (c).

Exercise 10.2 Claims Frequency Modelling with GLM (R Exercise)

Suppose that a motorbike insurance portfolio of an insurance company has been divided according to three tariff criteria:

- vehicle class: {weight over 60 kg and more than two gears, other} = $\{1,2\}$
- vehicle age: {at most one year, more than one year} = $\{1,2\}$
- geographic zone: {large cities, middle-sized towns, smaller towns and countryside} = $\{1,2,3\}$

Assume that we observed the following claim frequencies:

class	age	zone	volumes	number of claims	claim frequencies
1	1	1	100	25	0.250
1	1	2	200	15	0.075
1	1	3	500	15	0.030
1	2	1	400	60	0.150
1	2	2	900	90	0.100
1	2	3	7'000	210	0.030
2	1	1	200	45	0.225
2	1	2	300	45	0.150
2	1	3	600	30	0.050
2	2	1	800	80	0.100
2	2	2	1'500	120	0.080
2	2	3	5'000	90	0.018

- (a) Write an R-Code that performs a GLM analysis for the claim frequencies.
- (b) Plot the observed and the fitted claim frequencies against the vehicle class, the vehicle age and the geographic zone.
- (c) Create a Tukey-Anscombe plot of the fitted claim frequencies versus the deviance residuals and a QQ plot of the deviance residuals versus the theoretical (estimated) quantiles.
- (d) Is there statistical evidence that the classification into the geographic zones could be omitted?

Exercise 10.3 Tweedie's Compound Poisson Model

Let $S \sim \text{CompPoi}(\lambda v, G)$, where $\lambda > 0$ is the unknown claims frequency parameter, v > 0 the known volume and G the distribution function of a gamma distribution with known shape parameter $\gamma > 0$ and unknown scale parameter c > 0. Then S has a mixture distribution with a point mass of $\mathbb{P}[S = 0]$ in 0 and a density f_S on $(0, \infty)$.

- (a) Calculate $\mathbb{P}[S=0]$ and f_S .
- (b) Show that S belongs to the exponential dispersion family with

$$\begin{split} w &= v, \\ \phi &= \frac{\gamma + 1}{\lambda \gamma} \left(\frac{\lambda v \gamma}{c}\right)^{\frac{\gamma}{\gamma + 1}}, \\ \theta &= -(\gamma + 1) \left(\frac{\lambda v \gamma}{c}\right)^{-\frac{1}{\gamma + 1}}, \\ \Theta &= (-\infty, 0), \\ b(\theta) &= \frac{\gamma + 1}{\gamma} \left(\frac{-\theta}{\gamma + 1}\right)^{-\gamma}, \\ c(x, \phi, w) &= \log \left(\sum_{n=1}^{\infty} \left[\frac{(\gamma + 1)^{\gamma + 1}}{\gamma} \left(\frac{\phi}{w}\right)^{-\gamma - 1}\right]^n \frac{1}{\Gamma(n\gamma)n!} x^{n\gamma - 1}\right), \quad \text{if } x > 0, \text{ and} \\ c(0, \phi, w) &= 0. \end{split}$$