Non-Life Insurance: Mathematics and Statistics

Exercise sheet 2

Exercise 2.1 Gaussian Distribution

For a random variable X we write $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$ if X follows a Gaussian distribution with mean $\mu \in \mathbb{R}$ and variance $\sigma^{2}>0$. The moment generating function M_{X} of $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$ is given by

$$
M_{X}(r)=\exp \left\{r \mu+\frac{r^{2} \sigma^{2}}{2}\right\} \quad \text { for all } r \in \mathbb{R}
$$

(a) Let $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$ and $a, b \in \mathbb{R}$. Show that

$$
a+b X \sim \mathcal{N}\left(a+b \mu, b^{2} \sigma^{2}\right)
$$

(b) Let X_{1}, \ldots, X_{n} be independent with $X_{i} \sim \mathcal{N}\left(\mu_{i}, \sigma_{i}^{2}\right)$ for all $i \in\{1, \ldots, n\}$. Show that

$$
\sum_{i=1}^{n} X_{i} \sim \mathcal{N}\left(\sum_{i=1}^{n} \mu_{i}, \sum_{i=1}^{n} \sigma_{i}^{2}\right)
$$

Exercise 2.2 Maximum Likelihood and Hypothesis Test
Let Y_{1}, \ldots, Y_{n} be claim amounts in CHF that an insurance company has to pay. We assume that Y_{1}, \ldots, Y_{n} are independent random variables that all follow a log-normal distribution with the same unknown parameters $\mu \in \mathbb{R}$ and $\sigma^{2}>0$. Then, by definition, $\log Y_{1}, \ldots, \log Y_{n}$ are independent Gaussian random variables with mean $\mu \in \mathbb{R}$ and variance $\sigma^{2}>0$. Let $n=8$ and suppose that we have the following observations for $\log Y_{1}, \ldots, \log Y_{8}$:

$$
x_{1}=9, \quad x_{2}=4, \quad x_{3}=6, \quad x_{4}=7, \quad x_{5}=3, \quad x_{6}=11, \quad x_{7}=6, \quad x_{8}=10 .
$$

(a) Write down the joint density $f_{\mu, \sigma^{2}}\left(x_{1}, \ldots, x_{8}\right)$ of $\log Y_{1}, \ldots, \log Y_{8}$.
(b) Calculate $\log f_{\mu, \sigma^{2}}\left(x_{1}, \ldots, x_{8}\right)$.
(c) Calculate $\left(\hat{\mu}, \hat{\sigma}^{2}\right)=\arg \max _{\left(\mu, \sigma^{2}\right) \in \mathbb{R} \times \mathbb{R}>0} \log f_{\mu, \sigma^{2}}\left(x_{1}, \ldots, x_{8}\right)$.

Remark: Since the logarithm is a monotonically increasing function, $\hat{\mu}$ and $\hat{\sigma}^{2}$ are chosen such that the joint density of $\log Y_{1}, \ldots, Y_{n}$ at the given observations x_{1}, \ldots, x_{8} is maximized. Hence $\hat{\mu}$ and $\hat{\sigma}^{2}$ are called maximum likelihood estimates.
(d) Now suppose that we are interested in the mean μ of the logarithm of the claim amounts and an expert claims that $\mu=6$. Perform a statistical test to test the null hypothesis

$$
H_{0}: \mu=6
$$

against the (two-sided) alternative hypothesis

$$
H_{1}: \mu \neq 6 .
$$

Exercise 2.3 Variance Decomposition

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, $X \in L^{2}(\Omega, \mathcal{F}, \mathbb{P})$ and \mathcal{G} any sub- σ-algebra of \mathcal{F}. Show that

$$
\operatorname{Var}(X)=\mathbb{E}[\operatorname{Var}(X \mid \mathcal{G})]+\operatorname{Var}(\mathbb{E}[X \mid \mathcal{G}])
$$

