Non-Life Insurance: Mathematics and Statistics Exercise sheet 3

Exercise 3.1 No-Claims Bonus

An insurance company decides to offer a no-claims bonus to good car drivers, namely

- a 10% discount after three years of no claim, and
- a 20% discount after six years of no claim.

If the base premium is defined as the expected claim amount, how does it need to be adjusted so that this no-claims bonus can be financed? For simplicity, we consider one car driver who has been insured for at least six years. Answer the question in the following two situations:

- (a) The claim counts of the individual years of the considered car driver are independent, identically Poisson distributed random variables with frequency parameter $\lambda = 0.2$.
- (b) Suppose Θ follows a gamma distribution with shape parameter $\gamma = 1$ and scale parameter c = 1, i.e. the density f_{Θ} of Θ is given by

$$f_{\Theta}(x) = \begin{cases} \exp\{-x\} & \text{if } x \ge 0, \\ 0 & \text{else.} \end{cases}$$

Now, conditionally given Θ , the claim counts of the individual years of the considered car driver are independent, identically Poisson distributed random variables with frequency parameter $\Theta \lambda$, where $\lambda = 0.2$ as above.

Exercise 3.2 Central Limit Theorem

Let *n* be the number of claims and Y_1, \ldots, Y_n the corresponding claim sizes, where we assume that Y_1, \ldots, Y_n are independent, identically distributed random variables with expectation $\mathbb{E}[Y_1] = \mu$ and coefficient of variation $Vco(Y_1) = 4$. Use the Central Limit Theorem to determine an approximate minimum number of claims such that with probability of at least 95% the deviation of the empirical mean $\frac{1}{n} \sum_{i=1}^{n} Y_i$ from μ is less than 1%.

Exercise 3.3 Compound Binomial Distribution

Assume $S \sim \text{CompBinom}(v, p, G)$ for given $v \in \mathbb{N}$, $p \in (0, 1)$ and individual claim size distribution G. Let M > 0 such that $G(M) \in (0, 1)$. Define the compound distribution of claims Y_i exceeding threshold M by

$$S_{\rm lc} = \sum_{i=1}^{N} Y_i \ 1_{\{Y_i > M\}}.$$

Show that $S_{lc} \sim \text{CompBinom}(v, p[1 - G(M)], G_{lc})$, where the large claims size distribution function G_{lc} satisfies $G_{lc}(y) = \mathbb{P}(Y_1 \leq y | Y_1 > M)$.