Non-Life Insurance: Mathematics and Statistics

Exercise sheet 3

Exercise 3.1 No-Claims Bonus

An insurance company decides to offer a no-claims bonus to good car drivers, namely

- a 10% discount after three years of no claim, and
- a 20% discount after six years of no claim.

If the base premium is defined as the expected claim amount, how does it need to be adjusted so that this no-claims bonus can be financed? For simplicity, we consider one car driver who has been insured for at least six years. Answer the question in the following two situations:
(a) The claim counts of the individual years of the considered car driver are independent, identically Poisson distributed random variables with frequency parameter $\lambda=0.2$.
(b) Suppose Θ follows a gamma distribution with shape parameter $\gamma=1$ and scale parameter $c=1$, i.e. the density f_{Θ} of Θ is given by

$$
f_{\Theta}(x)= \begin{cases}\exp \{-x\} & \text { if } x \geq 0 \\ 0 & \text { else }\end{cases}
$$

Now, conditionally given Θ, the claim counts of the individual years of the considered car driver are independent, identically Poisson distributed random variables with frequency parameter $\Theta \lambda$, where $\lambda=0.2$ as above.

Exercise 3.2 Central Limit Theorem

Let n be the number of claims and Y_{1}, \ldots, Y_{n} the corresponding claim sizes, where we assume that Y_{1}, \ldots, Y_{n} are independent, identically distributed random variables with expectation $\mathbb{E}\left[Y_{1}\right]=\mu$ and coefficient of variation $\operatorname{Vco}\left(Y_{1}\right)=4$. Use the Central Limit Theorem to determine an approximate minimum number of claims such that with probability of at least 95% the deviation of the empirical mean $\frac{1}{n} \sum_{i=1}^{n} Y_{i}$ from μ is less than 1%.

Exercise 3.3 Compound Binomial Distribution

Assume $S \sim \operatorname{CompBinom}(v, p, G)$ for given $v \in \mathbb{N}, p \in(0,1)$ and individual claim size distribution G. Let $M>0$ such that $G(M) \in(0,1)$. Define the compound distribution of claims Y_{i} exceeding threshold M by

$$
S_{\mathrm{lc}}=\sum_{i=1}^{N} Y_{i} 1_{\left\{Y_{i}>M\right\}}
$$

Show that $S_{\text {lc }} \sim \operatorname{CompBinom}\left(v, p[1-G(M)], G_{\text {lc }}\right)$, where the large claims size distribution function $G_{\text {lc }}$ satisfies $G_{\text {lc }}(y)=\mathbb{P}\left(Y_{1} \leq y \mid Y_{1}>M\right)$.

