Non-Life Insurance: Mathematics and Statistics

Exercise sheet 7

Exercise 7.1 Hill Estimator (R Exercise)

Write an R-Code that samples 300 independent observations from a Pareto distribution with threshold $\theta=10$ millions and tail index $\alpha=2$. Use set.seed(100) for reproducibility reasons. Moreover, create a Hill plot and a log-log plot. What do you observe?

Exercise 7.2 Approximations for Compound Distributions

Assume that S has a compound Poisson distribution with expected number of claims $\lambda v=1^{\prime} 000$ and claim sizes following a gamma distribution with shape parameter $\gamma=100$ and scale parameter $c=\frac{1}{10}$. For all $\alpha \in(0,1)$, let q_{α} denote the α-quantile of S.
(a) Use the normal approximation to estimate $q_{0.95}$ and $q_{0.99}$.
(b) Use the translated gamma approximation to estimate $q_{0.95}$ and $q_{0.99}$.
(c) Use the translated log-normal approximation to estimate $q_{0.95}$ and $q_{0.99}$.
(d) Comment on the results found above.

Exercise 7.3 Akaike Information Criterion and Bayesian Information Criterion

Assume that we have i.i.d. claim sizes Y_{1}, \ldots, Y_{n}, with $n=1^{\prime} 000$, coming from a gamma distribution. Moreover, assume that if we fit a gamma distribution to this data, we obtain the following method of moments estimators and the MLEs:

$$
\begin{aligned}
\hat{\gamma}^{\mathrm{MM}} & =0.9794 & \text { and } & \hat{c}^{\mathrm{MM}}=9.4249, \\
\hat{\gamma}^{\mathrm{MLE}} & =1.0013 & \text { and } & \hat{c}^{\mathrm{MLE}}=9.6360 .
\end{aligned}
$$

The corresponding log-likelihoods are given by

$$
\ell_{\mathbf{Y}}\left(\hat{\gamma}^{\mathrm{MM}}, \hat{c}^{\mathrm{MM}}\right)=1264.013 \quad \text { and } \quad \ell_{\mathbf{Y}}\left(\hat{\gamma}^{\mathrm{MLE}}, \hat{c}^{\mathrm{MLE}}\right)=1264.171
$$

(a) Why is $\ell_{\mathbf{Y}}\left(\hat{\gamma}^{\mathrm{MLE}}, \hat{c}^{\mathrm{MLE}}\right)>\ell_{\mathbf{Y}}\left(\hat{\gamma}^{\mathrm{MM}}, \hat{c}^{\mathrm{MM}}\right)$? Which fit should be preferred according to the Akaike Information Criterion (AIC)?
(b) The estimates of γ are very close to 1 and, thus, we could also use an exponential distribution as claim size distribution. For the exponential distribution we obtain the MLE $\hat{c}^{\mathrm{MLE}}=9.6231$ and the corresponding log-likelihood $\ell_{\mathbf{Y}}\left(\hat{c}^{\mathrm{MLE}}\right)=1264.169$. According to the AIC and the Bayesian Information Criterion (BIC), should we prefer the gamma model or the exponential model?

