Non-Life Insurance: Mathematics and Statistics

Exercise sheet 7

Exercise 7.1 Hill Estimator (R Exercise)

Write an R-Code that samples 300 independent observations from a Pareto distribution with threshold $\theta = 10$ millions and tail index $\alpha = 2$. Use set.seed(100) for reproducibility reasons. Moreover, create a Hill plot and a log-log plot. What do you observe?

Exercise 7.2 Approximations for Compound Distributions

Assume that S has a compound Poisson distribution with expected number of claims $\lambda v = 1'000$ and claim sizes following a gamma distribution with shape parameter $\gamma = 100$ and scale parameter $c = \frac{1}{10}$. For all $\alpha \in (0, 1)$, let q_{α} denote the α -quantile of S.

- (a) Use the normal approximation to estimate $q_{0.95}$ and $q_{0.99}$.
- (b) Use the translated gamma approximation to estimate $q_{0.95}$ and $q_{0.99}$.
- (c) Use the translated log-normal approximation to estimate $q_{0.95}$ and $q_{0.99}$.
- (d) Comment on the results found above.

Exercise 7.3 Akaike Information Criterion and Bayesian Information Criterion Assume that we have i.i.d. claim sizes Y_1, \ldots, Y_n , with n = 1'000, coming from a gamma distribution. Moreover, assume that if we fit a gamma distribution to this data, we obtain the following method of moments estimators and the MLEs:

$\hat{\gamma}^{\rm MM} = 0.9794$	and	$\hat{c}^{\rm MM} = 9.4249,$
$\hat{\gamma}^{\rm MLE} = 1.0013$	and	$\hat{c}^{\text{MLE}} = 9.6360.$

The corresponding log-likelihoods are given by

 $\ell_{\mathbf{Y}}(\hat{\gamma}^{\text{MM}}, \hat{c}^{\text{MM}}) = 1264.013 \text{ and } \ell_{\mathbf{Y}}(\hat{\gamma}^{\text{MLE}}, \hat{c}^{\text{MLE}}) = 1264.171.$

- (a) Why is $\ell_{\mathbf{Y}}(\hat{\gamma}^{\text{MLE}}, \hat{c}^{\text{MLE}}) > \ell_{\mathbf{Y}}(\hat{\gamma}^{\text{MM}}, \hat{c}^{\text{MM}})$? Which fit should be preferred according to the Akaike Information Criterion (AIC)?
- (b) The estimates of γ are very close to 1 and, thus, we could also use an exponential distribution as claim size distribution. For the exponential distribution we obtain the MLE $\hat{c}^{\text{MLE}} = 9.6231$ and the corresponding log-likelihood $\ell_{\mathbf{Y}}(\hat{c}^{\text{MLE}}) = 1264.169$. According to the AIC and the Bayesian Information Criterion (BIC), should we prefer the gamma model or the exponential model?