Non-Life Insurance: Mathematics and Statistics

Exercise sheet 8

Exercise 8.1 Panjer Algorithm

In this exercise we calculate monthly health insurance premiums for different franchises d using the Panjer algorithm. In particular, we assume that the yearly claim amount

$$S = \sum_{i=1}^{N} Y_i$$

of a given customer is compound Poisson distributed with $N \sim \text{Poi}(1)$ and $Y_1 \stackrel{(d)}{=} k + Z$, where k = 100 CHF and $Z \sim \text{LN}(\mu = 7.8, \sigma^2 = 1)$. In health insurance, the policyholder can choose between different franchises $d \in \{300, 500, 1'000, 1'500, 2'000, 2'500\}$. Moreover, he has to pay $\alpha = 10\%$ of the part of the total claim amount that exceeds the franchise d, but only up to a maximum of M = 700 CHF. Thus, the yearly amount paid by the customer is given by

$$S_{\text{ins}} = \min\{S, d\} + \min\{\alpha \cdot (S - d)_+, M\}.$$

If we define $\pi_0 = \mathbb{E}[S]$ and $\pi_{ins} = \mathbb{E}[S_{ins}]$, then the monthly pure risk premium π is given by

$$\pi = \frac{\pi_0 - \pi_{\rm ins}}{12}.$$

Calculate π for the different franchises d = 300, 500, 1'000, 1'500, 2'000 and 2'500 using the Panjer algorithm. In order to do that, discretize the translated log-normal distribution using a span of s = 10 and putting all the probability mass to the upper end of the intervals.

Exercise 8.2 Variance Loading Principle

We would like to insure the following car fleet:

i	v_i	λ_i	$\mathbb{E}[Y_1^{(i)}]$	$\operatorname{Vco}(Y_1^{(i)})$
passenger car	40	25%	2'000	2.5
delivery van	30	23%	1'700	2.0
truck	10	19%	4'000	3.0

Assume that the total claim amounts for passenger cars, delivery vans and trucks can be modeled by independent compound Poisson distributions.

- (a) Calculate the expected claim amount of the car fleet.
- (b) Calculate the premium for the car fleet using the variance loading principle with $\alpha = 3 \cdot 10^{-6}$.

Exercise 8.3 Panjer Distribution

Let N be a random variable that has a Panjer distribution with parameters $a, b \in \mathbb{R}$. Calculate $\mathbb{E}[N]$ and $\operatorname{Var}(N)$. What can you say about the ratio of $\operatorname{Var}(N)$ to $\mathbb{E}[N]$?