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Solution 1.1 Discrete Distribution

(a) Note that N only takes values in N \ {0} and that p ∈ (0, 1). Hence we calculate

P[N ∈ R] =
∞∑
k=1

P[N = k] =
∞∑
k=1

(1− p)k−1p = p

∞∑
k=0

(1− p)k = p
1

1− (1− p) = p
1
p

= 1,

from which we can conclude that the geometric distribution indeed defines a probability
distribution on R.

(b) For n ∈ N \ {0}, we get

P[N ≥ n] =
∞∑
k=n

P[N = k] =
∞∑
k=n

(1− p)k−1p = (1− p)n−1p

∞∑
k=0

(1− p)k = (1− p)n−1,

where we used that
∑∞
k=0(1− p)k = 1

p , as was shown in (a).

(c) The expectation of a discrete random variable that takes values in N \ {0} can be calculated
as

E[N ] =
∞∑
k=1

k · P[N = k].

Thus we get

E[N ] =
∞∑
k=1

k(1−p)k−1p =
∞∑
k=0

(k+1)(1−p)kp =
∞∑
k=0

k(1−p)kp+
∞∑
k=0

(1−p)kp = (1−p)E[N ]+1,

where we used that
∑∞
k=0(1− p)kp = 1, as was shown in (a). We conclude that E[N ] = 1

p .

(d) Let r ∈ R. Then we calculate

E[exp{rN}] =
∞∑
k=1

exp{rk} · P[N = k]

=
∞∑
k=1

exp{rk}(1− p)k−1p

= p exp{r}
∞∑
k=1

[(1− p) exp{r}]k−1

= p exp{r}
∞∑
k=0

[(1− p) exp{r}]k.

Since (1− p) exp{r} is strictly positive, the sum on the right hand side is convergent if and
only if (1− p) exp{r} < 1, which is equivalent to r < − log(1− p). Hence E[exp{rN}] exists
if and only if r < − log(1− p) and in this case we have

MN (r) = E[exp{rN}] = p exp{r} 1
1− (1− p) exp{r} = p exp{r}

1− (1− p) exp{r} .
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(e) For r < − log(1− p), we have

d

dr
MN (r) = d

dr

p exp{r}
1− (1− p) exp{r}

= p exp{r}[1− (1− p) exp{r}] + p exp{r}(1− p) exp{r}
[1− (1− p) exp{r}]2

= p exp{r}
[1− (1− p) exp{r}]2 .

Hence we get

d

dr
MN (r)|r=0 = p exp{0}

[1− (1− p) exp{0}]2 = p

[1− (1− p)]2 = p

p2 = 1
p
.

We observe that d
drMN (r)|r=0 = E[N ], which holds in general for all random variables if the

moment generating function exists in an interval around 0.

Solution 1.2 Absolutely Continuous Distribution

(a) We calculate

P[Y ∈ R] =
∫ ∞
−∞

fY (x) dx =
∫ ∞

0
λ exp{−λx} dx = [− exp{−λx}]∞0 = [−0− (−1)] = 1,

from which we can conclude that the exponential distribution indeed defines a probability
distribution on R.

(b) For 0 < y1 < y2, we calculate

P[y1 ≤ Y ≤ y2] =
∫ y2

y1

fY (x) dx

=
∫ y2

y1

λ exp{−λx} dx

= [− exp{−λx}]y2
y1

= exp{−λy1} − exp{−λy2}.

(c) The expectation and the second moment of an absolutely continuous random variable can be
calculated as

E[Y ] =
∫ ∞
−∞

xfY (x) dx and E[Y 2] =
∫ ∞
−∞

x2fY (x) dx.

Thus, using partial integration, we get

E[Y ] =
∫ ∞

0
xλ exp{−λx} dx

= [−x exp{−λx}]∞0 +
∫ ∞

0
exp{−λx} dx

= 0 +
[
− 1
λ

exp{−λx}
]∞

0

= 1
λ
.
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The variance Var(Y ) can be calculated as

Var(Y ) = E[Y 2]− E[Y ]2 = E[Y 2]− 1
λ2 .

For the second moment E[Y 2] we get, again using partial integration,

E[Y 2] =
∫ ∞

0
x2λ exp{−λx} dx

=
[
−x2 exp{−λx}

]∞
0 +

∫ ∞
0

2x exp{−λx} dx

= 0 + 2
λ
E[Y ]

= 2
λ2 ,

from which we can conclude that

Var(Y ) = 2
λ2 −

1
λ2 = 1

λ2 .

Note that for the exponential distribution both the expectation and the variance exist. The
reason is that exp{−λx} goes much faster to 0 than x or x2 go to infinity, for all λ > 0.

(d) Let r ∈ R. Then we calculate

E[exp{rY }] =
∫ ∞

0
exp{rx}λ exp{−λx} dx =

∫ ∞
0

λ exp{(r − λ)x} dx.

The integral on the right hand side and therefore also E[exp{rY }] exist if and only if r < λ.
In this case we have

MY (r) = E[exp{rY }] = λ

r − λ
[exp{(r − λ)x}]∞0 = λ

r − λ
(0− 1) = λ

λ− r
and therefore

logMY (r) = log
(

λ

λ− r

)
.

(e) For r < λ, we have

d2

dr2 logMY (r) = d2

dr2 log
(

λ

λ− r

)
= d2

dr2 [log(λ)− log(λ− r)] = d

dr

1
λ− r

= 1
(λ− r)2 .

Hence we get
d2

dr2 logMY (r)|r=0 = 1
(λ− 0)2 = 1

λ2 .

We observe that d2

dr2 logMY (r)|r=0 = Var(Y ), which holds in general for all random variables
if the moment generating function exists in an interval around 0.

Solution 1.3 Conditional Distribution

(a) For y > θ > 0, we get

P[Y ≥ y] = P[Y ≥ y, I = 0] + P[Y ≥ y, I = 1]
= P[Y ≥ y|I = 0]P[I = 0] + P[Y ≥ y|I = 1]P[I = 1]
= 0 · (1− p) + P[Y ≥ y|I = 1] · p
= p · P[Y ≥ y|I = 1],
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since Y |I = 0 is equal to 0 almost surely and thus P[Y ≥ y|I = 0] = 0. Since Y | I = 1 ∼
Pareto(θ, α), we can calculate

P[Y ≥ y|I = 1] =
∫ ∞
y

fY |I=1(x) dx =
∫ ∞
y

α

θ

(x
θ

)−(α+1)
dx =

[
−
(x
θ

)−α]∞
y

=
(y
θ

)−α
.

We conclude that
P[Y ≥ y] = p

(y
θ

)−α
.

(b) Using that Y |I = 0 is equal to 0 almost surely and thus E[Y |I = 0] = 0, we get

E[Y ] = E[Y ·1{I=0}]+E[Y ·1{I=1}] = E[Y |I = 0]P[I = 0]+E[Y |I = 1]P[I = 1] = p·E[Y |I = 1].

Since Y | I = 1 ∼ Pareto(θ, α), we can calculate

E[Y |I = 1] =
∫ ∞
−∞

xfY |I=1(x) dx =
∫ ∞
θ

x
α

θ

(x
θ

)−(α+1)
dx = αθα

∫ ∞
θ

x−α dx

We see that the integral on the right hand side and therefore also E[Y ] exist if and only if
α > 1. In this case we get

E[Y |I = 1] = αθα
[
− 1
α− 1x

−(α−1)
]∞
θ

= αθα
1

α− 1θ
−(α−1) = θ

α

α− 1 .

We conclude that, if α > 1, we get

E[Y ] = pθ
α

α− 1 .

If 0 < α ≤ 1, E[Y ] does not exist.
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