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Solution 10.1 Tariffication Methods

In this exercise we work with K = 2 tariff criteria. The first criterion (vehicle type) has I = 3 risk
characteristics:

χ1,1 (passenger car), χ1,2 (delivery van) and χ1,3 (truck).

The second criterion (driver age) has J = 4 risk characteristics:

χ2,1 (21 - 30 years), χ2,2 (31 - 40 years), χ2,3 (41 - 50 years) and χ2,4 (51 - 60 years).

The claim amounts Si,j for the risk classes (i, j), 1 ≤ i ≤ 3, 1 ≤ j ≤ 4, are given on the exercise
sheet. We work with a multiplicative tariff structure. In particular, we use the model

E[Si,j ] = vi,j µχ1,i χ2,j ,

for all 1 ≤ i ≤ 3, 1 ≤ j ≤ 4, where we set the number of policies vi,j = 1. Moreover, in order to get a
unique solution, we set µ = 1 and χ1,1 = 1. Therefore, there remains to find the risk characteristics
χ1,2, χ1,3, χ2,1, χ2,2, χ2,3, χ2,4.

(a) In the method of Bailey & Simon, these risk characteristics are found by minimizing

X2 =
I∑
i=1

J∑
j=1

(Si,j − vi,j µχ1,i χ2,j)2

vi,j µχ1,i χ2,j
=

3∑
i=1

4∑
j=1

(Si,j − χ1,i χ2,j)2

χ1,i χ2,j
.

Let i ∈ {2, 3}. Then χ̂1,i is found by the solution of

0 != ∂

∂χ1,i
X2

=
4∑
j=1

∂

∂χ1,i

(Si,j − χ1,i χ2,j)2

χ1,i χ2,j

=
4∑
j=1

−2(Si,j − χ1,i χ2,j)χ1,i χ2,j − (Si,j − χ1,i χ2,j)2

χ2
1,i χ2,j

=
4∑
j=1

−2Si,jχ1,i χ2,j + 2χ2
1,i χ

2
2,j − S2

i,j + 2Si,jχ1,i χ2,j − χ2
1,i χ

2
2,j

χ2
1,i χ2,j

=
4∑
j=1

χ2
1,i χ

2
2,j − S2

i,j

χ2
1,i χ2,j

=
4∑
j=1

χ2,j −
1
χ2

1,i

4∑
j=1

S2
i,j

χ2,j
.

Thus, we get

χ̂1,i =
(∑4

j=1 S
2
i,j/χ2,j∑4

j=1 χ2,j

)1/2

.
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By an analogous calculation, one finds

χ̂2,j =
(∑3

i=1 S
2
i,j/χ1,i∑3

i=1 χ1,i

)1/2

,

for j ∈ {1, 2, 3, 4}. For solving these equations, one has to apply a root-finding algorithm like
for example the Newton-Raphson method. We get the following multiplicative tariff structure:

21-30y 31-40y 41-50y 51-60y χ̂1,i
passenger car 2’176 1’751 1’491 1’493 1
delivery van 2’079 1’674 1’425 1’427 0.96

truck 2’456 1’977 1’684 1’686 1.13
χ̂2,j 2’176 1’751 1’491 1’493

We see that the risk characteristics for the classes passenger car and delivery van are close to
each other, whereas for trucks we have a higher tariff. Moreover, an insured with age in the
class 21 - 30 years gets a considerably higher tariff than an insured with age in the class 31 -
40 years. The smallest tariff is assigned to insureds with age in the classes 41 - 50 years and
51 - 60 years. Note that we have

3∑
i=1

4∑
j=1

χ̂1,iχ̂2,j = 21’320 > 21’300 =
3∑
i=1

4∑
j=1

Si,j ,

which confirms the (systematic) positive bias of the method of Bailey & Simon shown in
Lemma 7.2 of the lecture notes.

(b) In the method of Bailey & Jung, which is also called method of marginal totals, the risk
characteristics χ1,2, χ1,3, χ2,1, χ2,2, χ2,3, χ2,4 are found by solving the equations

J∑
j=1

vi,j µχ1,i χ2,j =
J∑
j=1

Si,j ,

I∑
i=1

vi,j µχ1,i χ2,j =
I∑
i=1

Si,j .

Since I = 3, J = 4 and we work with vi,j = 1 and set µ = 1, we get the equations

4∑
j=1

χ1,i χ2,j =
4∑
j=1

Si,j ,

3∑
i=1

χ1,i χ2,j =
3∑
i=1

Si,j .

Thus, for i ∈ {2, 3} and j ∈ {1, 2, 3, 4}, we get

χ̂1,i =
4∑
j=1

Si,j

/ 4∑
j=1

χ2,j ,

χ̂2,j =
3∑
i=1

Si,j

/ 3∑
i=1

χ1,i.

Analogously to the method of Bailey & Simon, one has to solve this system of equations using
a root-finding algorithm. We get the following multiplicative tariff structure:
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21-30y 31-40y 41-50y 51-60y χ̂1,i
passenger car 2’170 1’749 1’490 1’490 1
delivery van 2’076 1’673 1’425 1’425 0.96

truck 2’454 1’977 1’684 1’684 1.13
χ̂2,j 2’170 1’749 1’490 1’490

We see that the results are very close to those in part (a) where we applied the method of
Bailey & Simon. However, now we have

3∑
i=1

4∑
j=1

χ̂1,iχ̂2,j = 21’300 = 21’300 =
3∑
i=1

4∑
j=1

Si,j ,

which comes as no surprise as we fitted the risk characteristics such that the above equality
holds true.

(c) In the log-linear regression model we work with the stochastic model

Xi,j
def= log Si,j

vi,j
= logSi,j ∼ N (β0 + β1,i + β2,j , σ

2),

where β0, β1,i, β2,j ∈ R and σ2 > 0, for all risk classes (i, j), 1 ≤ i ≤ 3, 1 ≤ j ≤ 4. The risk
characteristics of the two tariff criteria vehicle type and driver age are now given by

β1,1 (passenger car), β1,2 (delivery van) and β1,3 (truck),

and

β2,1 (21 - 30 years), β2,2 (31 - 40 years), β2,3 (41 - 50 years) and β2,4 (51 - 60 years).

In order to get a unique solution, we set β1,1 = β2,1 = 0. Because this will simplify notation
considerably, we write X = (X1, . . . , XM )′ with M = 12 and

X1 = X1,1, X2 = X1,2, X3 = X1,3, X4 = X1,4, X5 = X2,1, X6 = X2,2,

X7 = X2,3, X8 = X2,4, X9 = X3,1, X10 = X3,2, X11 = X3,3, X12 = X3,4.

Moreover, we define
β = (β0, β1,2, β1,3, β2,2, β2,3, β2,4)′ ∈ Rr+1,

where r = 5. Then, we assume that X has a multivariate Gaussian distribution

X ∼ N (Zβ, σ2I),

where I ∈ RM×M denotes the identity matrix and Z ∈ RM×(r+1) is the so-called design
matrix that satisfies

E[X] = Zβ.

For example for m = 1 we have

E[Xm] = E[X1] = E[X1,1] = β0 + β1,1 + β2,1 = β0 = (1, 0, 0, 0, 0, 0) β,

and for m = 8

E[Xm] = E[X8] = E[X2,4] = β0 + β1,2 + β2,4 = (1, 1, 0, 0, 0, 1) β.

Doing this for all m ∈ {1, . . . , 12}, we find the design matrix Z:
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intercept (β0) van (β1,2) truck (β1,3) 31-40y (β2,2) 41-50y (β2,3) 51-60y (β2,4)
1 0 0 0 0 0
1 0 0 1 0 0
1 0 0 0 1 0
1 0 0 0 0 1
1 1 0 0 0 0
1 1 0 1 0 0
1 1 0 0 1 0
1 1 0 0 0 1
1 0 1 0 0 0
1 0 1 1 0 0
1 0 1 0 1 0
1 0 1 0 0 1

Here we would like to point out that we can also use R to find the design matrix, see the
R-Code of Exercise 10.2. According to formula (7.9) of the lecture notes, the MLE β̂

MLE
of

the parameter vector β is given by

β̂
MLE

= [Z ′(σ2I)−1Z]−1Z ′(σ2I)−1X = (Z ′Z)−1Z ′X.

Note that β̂
MLE

does not depend on σ2. Moreover, the design matrix Z has full column rank
and, thus, Z ′Z is indeed invertible. See the R-Code given at the end of the solution to this
exercise for the calculation of β̂

MLE
. We get the following tariff structure:

β̂0 = 7.688 21-30y 31-40y 41-50y 51-60y β̂1,i
passenger car 2’182 1’758 1’500 1’501 0
delivery van 2’063 1’663 1’417 1’419 -0.056

truck 2’444 1’970 1’680 1’682 0.113
β̂2,j 0 -0.216 -0.375 -0.374

We see that the results are very close to those in parts (a) and (b) where we applied the
method of Bailey & Simon and the method of Bailey & Jung. However, since we are now
working in a stochastic framework, we also get standard errors and we can make statements
about the statistical significance of the parameters. According to the R-output, we get the
following p-values for the individual parameters:

β̂0 β̂1,2 β̂1,3 β̂2,2 β̂2,3 β̂2,4
p-value ≈ 0 0.232 0.036 -0.005 0.0003 0.0003

R gets these p-values by applying a t-test individually to each parameter, whether they are
equal to zero. While the p-values for β̂0, β̂1,3, β̂2,2, β̂2,3, β̂2,4 are smaller than 0.05 and, thus,
these parameters are significantly different from zero, the p-value of β̂1,2 (delivery van) is
fairly high. Hence, we might question if we really need the class delivery van.
In order to check whether there is statistical evidence that the classification into different
types of vehicles could be omitted, we define the null hypothesis of the reduced model:

H0 : β1,2 = β1,3 = 0,

i.e. we set p = 2 parameters equal to 0. Then we can perform the same analysis as above to
get the MLE β̂

MLE
H0

. In particular, let ZH0 be the design matrix Z without the second column
van (β1,2) and the third column truck (β1,3). Then β̂

MLE
H0

is given by

β̂
MLE
H0

= (Z ′H0
ZH0)−1Z ′H0

X.
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See the R-Code given below for the calculation of β̂
MLE
H0

. Now, for all m ∈ {1, . . . , 12}, we
define the fitted value X̂ full

m of the full model and the fitted value X̂H0
m of the reduced model.

In particular, we have
X̂ full
m =

[
Zβ̂

MLE]
m

and
X̂H0
m =

[
ZH0 β̂

MLE
H0

]
m
,

where [·]m denotes the m-th element of the corresponding vector, for all m ∈ {1, . . . , 12}.
Moreover, we define

SSfull
err =

M∑
m=1

(
Xm − X̂ full

m

)2

and

SSH0
err =

M∑
m=1

(
Xm − X̂H0

m

)2
.

According to formula (7.15) of the lecture notes, the test statistic

T = SSH0
err − SSfull

err
SSfull

err

M − r − 1
p

= 3 SS
H0
err − SSfull

err
SSfull

err

has an F -distribution with degrees of freedeom given by df1 = p = 2 and df2 = M − r− 1 = 6.
See the R-Code below for the calculation of T . We get

T ≈ 8.336,

which corresponds to a p-value of approximately 1.85%. Thus, we can reject H0 at significance
level of 5%, i.e. there is no statistical evidence that the classification into different types of
vehicles could be omitted.

(d) As we already mentioned above, the method of Bailey & Simon, the method of Bailey & Jung
and the MLE method in the log-linear regression model all lead to approximately the same
results. The only differences are, that with the method of Bailey & Jung we get coinciding
marginal totals and with the log-linear regression model we are in a stochastic framework
which allows for calculating parameter uncertainties and hypothesis testing.

1 ### c)
2
3 ### We apply the log - linear regression method to the observed

claim amounts given on the exercise sheet
4
5 ### Load the observed claim amounts into a matrix
6 S <- matrix (c

(2000 ,2200 ,2500 ,1800 ,1600 ,2000 ,1500 ,1400 ,1700 ,1600 ,1400 ,1600)
, nrow = 3)

7
8 ### Define the design matrix Z
9 Z <- matrix (c(rep (1 ,12) ,rep (0 ,4) ,rep (1 ,4) ,rep (0 ,12) ,rep (1 ,4) ,

rep(c(0 ,1 ,0 ,0) ,3),rep(c(0 ,0 ,1 ,0) ,3),rep(c(0 ,0 ,0 ,1) ,3)),nrow
= 12)

10
11 ### Store the design matrix Z ( without the intercept term) and

the dependent variable log(S_{i,j}) in one dataset

Updated: November 30, 2017 5 / 15



Non-Life Insurance: Mathematics and Statistics, D-MATH
HS 2017 Solution sheet 10

12 data <- cbind(Z[,-1], matrix (log(t(S)),nrow = 12))
13 data <- as.data.frame(data)
14 colnames (data) <- c("van", "truck", "X31_40y", "X41_50y", "X51_

60y", " observation ")
15
16 ### Apply the regression model
17 linear . model1 <- lm( formula = observation ~ van + truck + X31_

40y + X41_50y + X51_60y,data=data)
18
19 ### Print the output of the regression model
20 summary ( linear . model1 )
21
22 ### Fitted values
23 fitted ( linear . model1 )
24
25 ### We can also get the parameters by applying the formula

(7.9) of the lecture notes
26 solve(t(Z)%*%Z)%*%t(Z)%*% matrix (log(t(S)),nrow = 12)
27
28
29 ### Apply the regression model under H_{0}
30 linear . model2 <- lm( formula = observation ~ X31_40y + X41_50y +

X51_60y,data=data)
31
32 ### Calculation of the test statistic T which has an F-

distribution
33 T <- 3 * (sum (( fitted ( linear . model2 ) - data [ ,6]) ^2) - sum ((

fitted ( linear . model1 ) - data [ ,6]) ^2)) / sum (( fitted ( linear .
model1 ) - data [ ,6]) ^2)

34
35 ### Calculation of the corresponding p-value
36 pf(T, 2, 6, lower.tail = FALSE)

Note that we could also define the covariates of factor type in R which then automatically
implies that these covariates are of categorical type and R chooses the design matrix Z
accordingly, see the R-Code for the solution of Exercise 10.2 given below.

Solution 10.2 Tariffication Methods

(a) In this exercise we work with K = 3 tariff criteria. The first criterion (vehicle class) has 2
risk characteristics:

β1,1 (weight over 60 kg and more than two gears) and β1,2 (other).

The second criterion (vehicle age) also has 2 risk characteristics:

β2,1 (at most one year) and β2,2 (more than one year).

The third criterion (geographic zone) has 3 risk characteristics:

β3,1 (large cities), β3,2 (middle-sized towns) and β3,3 (smaller towns and countryside).
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The observed number of claims Nl1,l2,l3 , the observed volumes vl1,l2,l3 and the observed claim
frequencies

λl1,l2,l3 = Nl1,l2,l3
vl1,l2,l3

for the risk classes (l1, l2, l3), 1 ≤ l1 ≤ 2, 1 ≤ l2 ≤ 2, 1 ≤ l3 ≤ 3, are given on the exercise sheet.
Now, for modelling purposes, we assume that all Nl1,l2,l3 are independent with

Nl1,l2,l3 ∼ Poi(λl1,l2,l3vl1,l2,l3)

and define
Xl1,l2,l3 = Nl1,l2,l3

vl1,l2,l3
.

Then we use the model Ansatz

g(λl1,l2,l3) = g

(
E
[
Nl1,l2,l3
vl1,l2,l3

])
= g (E [Xl1,l2,l3 ]) = β0 + β1,l1 + β2,l2 + β3,l3 ,

where β0 ∈ R and where we use the log-link function, i.e. g(·) = log(·). In order to get a
unique solution, we set β1,1 = β2,1 = β3,1 = 0. Moreover, we define

β = (β0, β1,2, β2,2, β3,2, β3,3)′ ∈ Rr+1,

where r = 4. Similarly as in Exercise 10.1, (c), we will relabel the risk classes with the index
m ∈ {1, . . . ,M}, where M = 2 · 2 · 3 = 12, define X = (X1, . . . , XM )′ and the design matrix
Z ∈ RM×(r+1) that satisfies

logE[X] = Zβ,

where the logarithm is applied componentwise to E[X]. Let m ∈ {1, . . . , 12}. According to
Example 7.10 of the lecture notes, Xm = Nm/vm belongs to the exponential dispersion family
with cumulant function b(·) = exp{·}, θm = log λm, wm = vm and dispersion parameter φ = 1,
i.e. we have

[Zβ]m = logE[Xm] = logE
[
Nm
vm

]
= log λm = θm,

where [Zβ]m denotes as above the m-th element of the vector Zβ. Thus, we assume that
X1, . . . , XM are independent with

Xm ∼ EDF(θm = [Zβ]m, φ = 1, vm, b(·) = exp{·}),

for all m ∈ {1, . . . ,M}. According to Proposition 7.11 of the lecture notes, the MLE β̂
MLE

of
β is the solution of

Z ′V exp{Zβ} = Z ′VX, (1)
where the weight matrix V is given by V = diag(v1, . . . , vM ). This equation has to be solved
numerically. See the R-Code at the end of the solution to this exercise for the calculation of
β̂

MLE
. We get the following estimates:

β̂0 β̂1,2 β̂2,2 β̂3,2 β̂3,3
MLE -1.435 -0.237 -0.502 -0.404 -1.657

We observe that insureds with a vehicle with weight over 60 kg and more than two gears tend
to cause more claims than insureds with other vehicles. Analogoulsy, if the vehicle is at most
one year old, we expect more claims than if it was older. Regarding the geographic zone,
we see that driving in middle-sized towns leads to fewer claims than driving in large cities.
Moreover, driving in smaller towns and countryside leads to even fewer claims than driving in
middle-sized towns, where this difference is greater than the difference between large cities
and middle-sized towns.
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(b) The observed and the fitted claim frequencies against the vehicle class, the vehicle age and
the geographical zone look as follows:
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See the R-Code at the end of the solution to this exercise for creating the plots given above.
Note that the observed and the fitted marginal claim frequencies are always the same. This is
a direct consequence of equation (1) given above which ensures that the observed and the
fitted total marginal sums are the same if we use the same volumes again. This is also the
reason why in the marginal plot for the vehicle class we don’t see that insureds with a vehicle
with weight over 60 kg and more than two gears tend to cause more claims than insureds
with other vehicles as expected after the discussion at the end of part (a). More precisely,
for the vehicles with weight over 60 kg and more than two gears we have a smaller volume
for the riskier classes with respect to the other tariff criteria vehicle age and geographic zone
than for the other vehicles. This compensates for the fact that vehicles with weight over 60
kg and more than two gears tend to cause more claims than other vehicles, as seen at the end
of part (a). For the other variables vehicle age and geographic zone we again see the same
results as in part (a).

(c) The Tukey-Anscombe plot and the QQ plot look as follows:

See the R-Code at the end of the solution to this exercise for creating the plots given above.
They are both not ideal, but considering that we only have 12 risk classes, we accept them.

(d) We will perform two tests in order to check if there is statistical evidence that the classification
into the geographic zones could be omitted. Note that in part (a) we saw that we tend to
have considerably fewer claims for drivers in smaller towns and countryside than for drivers
in middle-sized towns. The same holds true in a weakened form for middle-sized towns and
large cities. Thus, we would expect that the classification into the three different geographic
zone is reasonable. Now we will investigate this. To start with, note that the logarithmic
probability that a Poisson random variable with frequency parameter α attains the value k,
for some k ∈ N, is equal to

log
(

exp{−α}α
k

k!

)
= −α+ k logα− log k!.
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Thus, defining
λ̂

MLE
= exp

{
Zβ̂

MLE}
,

with λ̂
MLE

=
(
λ̂MLE

1 , . . . , λ̂MLE
M

)
, the joint log-likelihood function lX of X at λ̂

MLE
is given

by

lX

(
λ̂

MLE)
=

M∑
m=1
−λ̂MLE

m vm +Xmvm log
(
λ̂MLE
m vm

)
− log [(Xmvm)!] .

Therefore, we get for the scaled deviance statistics D∗
(

X, λ̂
MLE)

:

D∗
(

X, λ̂
MLE)

= 2
[
lX (X)− lX

(
λ̂

MLE)]
= 2

M∑
m=1
−Xmvm +Xmvm logXm + λ̂MLE

m vm −Xmvm log λ̂MLE
m

= 2
M∑
m=1

vm

(
Xm logXm −Xm −Xm log λ̂MLE

m + λ̂MLE
m

)
.

Moreover, since for the Poisson case we have φ = 1, the scaled deviance statisticsD∗
(

X, λ̂
MLE)

and the deviance statistics D
(

X, λ̂
MLE)

are the same. Now, in order to check whether there
is statistical evidence that the classification into the geographic zones could be omitted, we
define the null hypothesis

H0 : β3,2 = β3,3 = 0.
Thus, in the reduced model, we set the above p = 2 variables equal to 0. Then we can
recalculate β̂

MLE
H0

for this reduced model and define

λ̂
MLE
H0

= exp
{
ZH0 β̂

MLE
H0

}
,

where ZH0 is the design matrix in the reduced model. According to formula (7.22) of the
lecture notes, the test statistic

F =
D
(

X, λ̂
MLE
H0

)
−D

(
X, λ̂

MLE)
D
(

X, λ̂
MLE) M − r − 1

p

= 7
2

D
(

X, λ̂
MLE
H0

)
−D

(
X, λ̂

MLE)
D
(

X, λ̂
MLE)

has approximately an F -distribution with degrees of freedom given by df1 = p = 2 and
df2 = M − r − 1 = 7. See the R-Code below for the calculation of F. We get

F ≈ 51.239,

which corresponds to a p-value of approximately 0.0066%. Thus, we can reject H0 at
significance level of 5%. According to formula (7.23) of the lecture notes, a second test
statistic is given by

X2 = D∗
(

X, λ̂
MLE
H0

)
−D∗

(
X, λ̂

MLE)
.

The test statistic X2 has approximately a χ2-distribution with df = p = 2 degrees of freedom.
See the R-Code below for the calculation of X2. We get

X2 ≈ 389.882,
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which corresponds to a p-value of approximately 2.179 · 10−85, which is basically 0. Thus,
we can reject H0 at significance level of 5%. Since we can reject H0 using two different test
statistics, we can conclude that there is no statistical evidence that the classification into
different types of vehicles could be omitted.

1 ### a)
2
3 ### We perform a GLM analysis for the claim frequencies
4
5 ### Determine the design matrix Z
6 class <- factor (c(rep (1 ,6) ,rep (2 ,6)))
7 age <- factor (c(rep (1 ,3) ,rep (2 ,3) ,rep (1 ,3) ,rep (2 ,3)))
8 zone <- factor (c(rep (1:3 ,4)))
9 counts <- c(25 ,15 ,15 ,60 ,90 ,210 ,45 ,45 ,30 ,80 ,120 ,90)

10 volumes <- c(1 ,2 ,5 ,4 ,9 ,70 ,2 ,3 ,6 ,8 ,15 ,50) * 100
11 Z <- model. matrix ( counts ~ class + age + zone)
12
13 ### Store the design matrix Z ( without the intercept term), the

counts and the volumes in one dataset
14 data <- cbind(Z[,-1], counts , volumes )
15 data <- as.data.frame(data)
16
17 ### Apply GLM
18 d.glm <- glm( counts ~ class2 + age2 + zone2 + zone3 , data=data ,

offset = log( volumes ), family = poisson ())
19 d.glm
20
21
22
23 ### b)
24
25 ### Fitted number of claims
26 fitted (d.glm)
27
28 ### Store the features , the observed number of claims and the

fitted numer of claims in one data set
29 data2 <- cbind(class , age , zone , volumes , counts , fitted (d.glm)

)
30 data2 <- as.data.frame(data2)
31 colnames (data2)[5:6] <- c(" observed "," fitted ")
32
33 ### Marginal claim frequencies for the two class categories
34 library (plyr)
35 class.comp <- ddply(data2 , .( class), summarise , volumes = sum(

volumes ), observed = sum( observed ), fitted = sum( fitted ))
36 barplot (t(as. matrix (class.comp [ ,3:4]/class.comp [ ,2])), beside =

TRUE , names.arg = c(" weight > 60 kg , nr. of gears > 2", "
other"), main = " claims frequencies ( observed vs. fitted )",
ylim = c(0 ,0.15) , xlab = " vehicle class", ylab = "mean claim

frequency ",legend .text = TRUE)
37
38 ### Marginal claim frequencies for the two age categories
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39 age.comp <- ddply(data2 , .( age), summarise , volumes = sum(
volumes ), observed = sum( observed ), fitted = sum( fitted ))

40 barplot (t(as. matrix (age.comp [ ,3:4]/age.comp [ ,2])), beside =
TRUE , names.arg = c("at most one year", "more than one year"
), main = " claims frequencies ( observed vs. fitted )",ylim =
c(0 ,0.15) , xlab = " vehicle age", ylab = "mean claim
frequency ",legend .text = TRUE)

41
42 ### Marginal claim frequencies for the three zone categories
43 zone.comp <- ddply(data2 , .( zone), summarise , volumes = sum(

volumes ), observed = sum( observed ), fitted = sum( fitted ))
44 barplot (t(as. matrix (zone.comp [ ,3:4]/zone.comp [ ,2])), beside =

TRUE , names.arg = c("large cities ", "middle -sized towns", "
smaller towns"), main = " claims frequencies ( observed vs.
fitted )",ylim = c(0 ,0.15) , xlab = " geographic zone", ylab =
"mean claim frequency ",legend .text = TRUE)

45
46
47
48 ### c)
49
50 par(mfrow = c(1, 2))
51
52 ### Calculate the deviance residuals
53 dev.red <- sign(data2$ observed - data2$ fitted ) * sqrt (2 * data2

$ observed *(-log(data2$ fitted / data2$ observed ) + data2$
fitted / data2$ observed - 1))

54
55 ### Tukey - Anscombe plot
56 plot(data2$fitted , dev.red , main = "Tukey - Anscombe Plot", xlab

= " fitted means", ylab = " deviance residuals ", ylim = c
(-3,3))

57 abline (h = 0,col = "red")
58
59 ### QQ plot
60 library (mgcv)
61 qq.gam(d.glm , type = " deviance ",rep = 1, pch =19, main = "QQ

Plot")
62
63
64
65 ### d)
66
67 ### Calculate the deviance statistics of the full model
68 X <- data2$ observed / data2$ volumes
69 lambda .full <- data2$ fitted / data2$ volumes
70 D.full <- 2 * sum(data2$ volumes * (X * log(X) - X - X * log(

lambda .full) + lambda .full))
71
72 ### Fit the reduced model
73 d.glm .2 <- glm( counts ~ class2 + age2 , data=data , offset = log(

volumes ), family = poisson ())
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74 d.glm .2
75
76 ### Calculate the deviance statistics of the reduced model
77 lambda . reduced <- fitted (d.glm .2) / data2$ volumes
78 D. reduced <- 2 * sum(data2$ volumes * (X * log(X) - X - X * log(

lambda . reduced ) + lambda . reduced ))
79
80 ### Calculate the test statistic F
81 F <- 7 / 2 * (D. reduced - D.full) / D.full
82
83 ### Calculation of the corresponding p-value
84 pf(F, 2, 7, lower.tail = FALSE)
85
86 ### Calculate the test statistic X^2
87 X.2 <- D. reduced - D.full
88
89 ### Calculation of the corresponding p-value
90 pchisq (X.2, 2, lower.tail = FALSE)

Solution 10.3 Tweedie’s Compound Poisson Model

(a) We can write S as

S =
N∑
i=1

Yi,

where N ∼ Poi(λv), Y1, Y2, . . .
i.i.d.∼ G and N and (Y1, Y2, . . . ) are independent. Since G is the

distribution function of a gamma distribution, we have G(0) = 0 and, thus,

P[S = 0] = P[N = 0] = exp{−λv}.

Let x ∈ (0,∞). Then the density fS of S at x can be calculated as

fS(x) = d

dx
P[S ≤ x],

where we have

P[S ≤ x] =
∞∑
n=0

P[S ≤ x,N = n]

=
∞∑
n=0

P[S ≤ x |N = n]P[N = n]

= P[S ≤ x |N = 0]P[N = 0] +
∞∑
n=1

P[S ≤ x |N = n]P[N = n]

= P[N = 0] +
∞∑
n=1

P

[
n∑
i=1

Yi ≤ x

]
P[N = n].
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Since Y1, Y2, . . .
i.i.d.∼ Γ(γ, c), we get

n∑
i=1

Yi ∼ Γ(nγ, c).

By writing fn for the density function of Γ(nγ, c), for all n ∈ N, we get

fS(x) = d

dx

(
P[N = 0] +

∞∑
n=1

P

[
n∑
i=1

Yi ≤ x

]
P[N = n]

)

=
∞∑
n=1

d

dx
P

[
n∑
i=1

Yi ≤ x

]
P[N = n]

=
∞∑
n=1

fn(x)P[N = n]

=
∞∑
n=1

cnγ

Γ(nγ)x
nγ−1 exp{−cx} exp{−λv} (λv)n

n!

= exp{−(cx+ λv)}
∞∑
n=1

(λvcγ)n 1
Γ(nγ)n!x

nγ−1

= exp
{
−(cx+ λv) + log

[ ∞∑
n=1

(λvcγ)n 1
Γ(nγ)n!x

nγ−1

]}
,

for all x ∈ (0,∞). Note that one can show that interchanging summation and differentiation
above is indeed allowed. However, the proof is omitted here.

(b) Let X ∼ fX belong to the exponential dispersion family with w, φ, θ, b(·) and c(·, ·, ·) as given
on the exercise sheet. Then we have

xθ

φ/w
= −xv

(γ + 1)
(
λvγ
c

)− 1
γ+1

γ+1
λγ

(
λvγ
c

) γ
γ+1

= −xλvγ
(
λvγ

c

)−1
= −cx,

for all x ≥ 0, and

b(θ)
φ/w

= v

γ+1
γ

(
−θ
γ+1

)−γ
γ+1
λγ

(
λvγ
c

) γ
γ+1

= λv

(
λvγ
c

) γ
γ+1

(
λvγ
c

) γ
γ+1

= λv.

Moreover, since

(γ + 1)γ+1

γ

(
φ

w

)−γ−1
= (γ + 1)γ+1

γ

[
γ + 1
λvγ

(
λvγ

c

) γ
γ+1
]−γ−1

= 1
γ

(λvγ)γ+1
(
λvγ

c

)−γ
= 1
γ
λvγcγ

= λvcγ ,
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we have

c(x, φ,w) = log
( ∞∑
n=1

[
(γ + 1)γ+1

γ

(
φ

w

)−γ−1
]n

1
Γ(nγ)n! x

nγ−1

)

= log
[ ∞∑
n=1

(λvcγ)n 1
Γ(nγ)n! x

nγ−1

]
,

for all x > 0. By putting together the above terms, we get

fX(x; θ, φ) = exp
{
xθ − b(θ)
φ/w

+ c(x, φ,w)
}

= exp
{
−(cx+ λv) + log

[ ∞∑
n=1

(λvcγ)n 1
Γ(nγ)n!x

nγ−1

]}
= fS(x),

for all x > 0, and

fX(0; θ, φ) = exp
{

0 · θ − b(θ)
φ/w

+ c(0, φ, w)
}

= exp{−λv} = P[S = 0].

We conclude that S indeed belongs to the exponential dispersion family. Note that with this
result at hand one might be tempted to estimate the shape parameter γ of the claim size
distribution and then to do a GLM analysis directly on the compound claim size S. However,
there are two reasons to rather perform a separate GLM analysis of the claim frequency and
the claim severity instead: First, claim frequency modelling is usually more stable than claim
severity modelling and often much of the differences between tariff cells are due to the claim
frequency. Second, a separate analysis of the claim frequency and the claim severity allows
more insight into the differences between the tariffs.
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