Non-Life Insurance: Mathematics and Statistics

Solution sheet 2

Solution 2.1 Gaussian Distribution

(a) The moment generating function of $a+b X$ can be calculated as

$$
M_{a+b X}(r)=\mathbb{E}[\exp \{r(a+b X)\}]=\exp \{r a\} \mathbb{E}[\exp \{r b X\}]=\exp \{r a\} M_{X}(r b),
$$

for all $r \in \mathbb{R}$. Using the formula for the moment generating function of X given on the exercise sheet, we get

$$
M_{a+b X}(r)=\exp \{r a\} \exp \left\{r b \mu+\frac{(r b)^{2} \sigma^{2}}{2}\right\}=\exp \left\{r(a+b \mu)+\frac{r^{2} b^{2} \sigma^{2}}{2}\right\},
$$

which is equal to the moment generating function of a Gaussian random variable with expectation $a+b \mu$ and variance $b^{2} \sigma^{2}$. Since the moment generating function uniquely determines the distribution, we conclude that

$$
a+b X \sim \mathcal{N}\left(a+b \mu, b^{2} \sigma^{2}\right)
$$

(b) Using the independence of X_{1}, \ldots, X_{n}, the moment generating function of $Y=\sum_{i=1}^{n} X_{i}$ can be calculated as

$$
M_{Y}(r)=\mathbb{E}[\exp \{r Y\}]=\mathbb{E}\left[\exp \left\{r \sum_{i=1}^{n} X_{i}\right\}\right]=\prod_{i=1}^{n} \mathbb{E}\left[\exp \left\{r X_{i}\right\}\right]=\prod_{i=1}^{n} M_{X_{i}}(r)
$$

for all $r \in \mathbb{R}$. Using the formula for the moment generating function of a Gaussian random variable given on the exercise sheet, we get

$$
M_{Y}(r)=\prod_{i=1}^{n} \exp \left\{r \mu_{i}+\frac{r^{2} \sigma_{i}^{2}}{2}\right\}=\exp \left\{r \sum_{i=1}^{n} \mu_{i}+\frac{r^{2} \sum_{i=1}^{n} \sigma_{i}^{2}}{2}\right\}
$$

which is equal to the moment generating function of a Gaussian random variable with expectation $\sum_{i=1}^{n} \mu_{i}$ and variance $\sum_{i=1}^{n} \sigma_{i}^{2}$. Since the moment generating function uniquely determines the distribution, we conclude that

$$
\sum_{i=1}^{n} X_{i} \sim \mathcal{N}\left(\sum_{i=1}^{n} \mu_{i}, \sum_{i=1}^{n} \sigma_{i}^{2}\right)
$$

Solution 2.2 Maximum Likelihood and Hypothesis Test

(a) Since $\log Y_{1}, \ldots, \log Y_{8}$ are independent random variables, the joint density $f_{\mu, \sigma^{2}}\left(x_{1}, \ldots, x_{8}\right)$ of $\log Y_{1}, \ldots, \log Y_{8}$ is given by product of the marginal densities of $\log Y_{1}, \ldots, \log Y_{8}$. We have

$$
f_{\mu, \sigma^{2}}\left(x_{1}, \ldots, x_{8}\right)=\prod_{i=1}^{8} \frac{1}{\sqrt{2 \pi} \sigma} \exp \left\{-\frac{1}{2} \frac{\left(x_{i}-\mu\right)^{2}}{\sigma^{2}}\right\}
$$

since $\log Y_{1}, \ldots, \log Y_{8}$ are Gaussian random variables with mean μ and variance σ^{2}.
(b) By taking the logarithm, we get

$$
\begin{aligned}
\log f_{\mu, \sigma^{2}}\left(x_{1}, \ldots, x_{8}\right) & =\sum_{i=1}^{8}-\log (\sqrt{2 \pi})-\log (\sigma)-\frac{1}{2} \frac{\left(x_{i}-\mu\right)^{2}}{\sigma^{2}} \\
& =-8 \log (\sqrt{2 \pi})-8 \log (\sigma)-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{8}\left(x_{i}-\mu\right)^{2}
\end{aligned}
$$

(c) We have $\log f_{\mu, \sigma^{2}}\left(x_{1}, \ldots, x_{8}\right)<-8 \log (\sigma)$ for all $\mu \in \mathbb{R}$. Hence, independently of μ, $\log f_{\mu, \sigma^{2}}\left(x_{1}, \ldots, x_{8}\right) \rightarrow-\infty$ if $\sigma^{2} \rightarrow \infty$. Moreover, since for example $x_{1} \neq x_{2}$, there exists a $c>0$ with $\sum_{i=1}^{8}\left(x_{i}-\mu\right)^{2}>c$ and thus $\log f_{\mu, \sigma^{2}}\left(x_{1}, \ldots, x_{8}\right)<-8 \log (\sigma)-\frac{c}{2 \sigma^{2}}$ for all $\mu \in \mathbb{R}$. Since $\frac{c}{2 \sigma^{2}}$ goes much faster to ∞ than $8 \log (\sigma)$ goes to $-\infty$ if $\sigma^{2} \rightarrow 0$, we have $\log f_{\mu, \sigma^{2}}\left(x_{1}, \ldots, x_{8}\right) \rightarrow-\infty$ if $\sigma^{2} \rightarrow 0$, independently of μ. Finally, if $\sigma^{2} \in\left[c_{1}, c_{2}\right]$ for some $0<c_{1}<c_{2}$, we have $\log f_{\mu, \sigma^{2}}\left(x_{1}, \ldots, x_{8}\right)<-\frac{1}{2 c_{2}} \sum_{i=1}^{8}\left(x_{i}-\mu\right)^{2}$. Hence, independently of the value of σ^{2} in the interval $\left[c_{1}, c_{2}\right], \log f_{\mu, \sigma^{2}}\left(x_{1}, \ldots, x_{8}\right) \rightarrow-\infty$ if $|\mu| \rightarrow \infty$. Since $\log f_{\mu, \sigma^{2}}\left(x_{1}, \ldots, x_{8}\right)$ is continuous in μ and σ^{2}, we can conclude that it attains its global maximum somewhere in $\mathbb{R} \times \mathbb{R}_{>0}$. Thus $\hat{\mu}$ and $\hat{\sigma}^{2}$ as defined on the exercise sheet have to satisfy the first order conditions

$$
\begin{aligned}
\left.\frac{\partial}{\partial \mu} \log f_{\mu, \sigma^{2}}\left(x_{1}, \ldots, x_{8}\right)\right|_{\left(\mu, \sigma^{2}\right)=\left(\hat{\mu}, \hat{\sigma}^{2}\right)} & =0 \quad \text { and } \\
\left.\frac{\partial}{\partial\left(\sigma^{2}\right)} \log f_{\mu, \sigma^{2}}\left(x_{1}, \ldots, x_{8}\right)\right|_{\left(\mu, \sigma^{2}\right)=\left(\hat{\mu}, \hat{\sigma}^{2}\right)} & =0
\end{aligned}
$$

We calculate

$$
\frac{\partial}{\partial \mu} \log f_{\mu, \sigma^{2}}\left(x_{1}, \ldots, x_{8}\right)=\frac{1}{\sigma^{2}} \sum_{i=1}^{8}\left(x_{i}-\mu\right)
$$

which is equal to 0 if and only if $\mu=\frac{1}{8} \sum_{i=1}^{8} x_{i}$. Moreover, we have

$$
\frac{\partial}{\partial\left(\sigma^{2}\right)} \log f_{\mu, \sigma^{2}}\left(x_{1}, \ldots, x_{8}\right)=-\frac{8}{2 \sigma^{2}}+\frac{1}{2 \sigma^{4}} \sum_{i=1}^{8}\left(x_{i}-\mu\right)^{2}=\frac{1}{2 \sigma^{2}}\left[-8+\frac{1}{\sigma^{2}} \sum_{i=1}^{8}\left(x_{i}-\mu\right)^{2}\right]
$$

which is equal to 0 if and only if $\sigma^{2}=\frac{1}{8} \sum_{i=1}^{8}\left(x_{i}-\mu\right)^{2}$. Since there is only tuple in $\mathbb{R} \times \mathbb{R}_{>0}$ that satisfies the first order conditions, we conclude that

$$
\hat{\mu}=\frac{1}{8} \sum_{i=1}^{8} x_{i}=7 \quad \text { and } \quad \hat{\sigma}^{2}=\frac{1}{8} \sum_{i=1}^{8}\left(x_{i}-\hat{\mu}\right)^{2}=\frac{1}{8} \sum_{i=1}^{8}\left(x_{i}-7\right)^{2}=7
$$

Note that the MLE $\hat{\sigma}^{2}$ is not unbiased. Indeed, if we replace x_{1}, \ldots, x_{8} by independent Gaussian random variables X_{1}, \ldots, X_{8} with expectation $\mu \in \mathbb{R}$ and variance $\sigma^{2}>0$ and write $\hat{\mu}$ for $\frac{1}{8} \sum_{i=1}^{8} X_{i}$, we can calculate

$$
\mathbb{E}\left[\hat{\sigma}^{2}\right]=\mathbb{E}\left[\hat{\sigma}^{2}\left(X_{1}, \ldots, X_{8}\right)\right]=\mathbb{E}\left[\frac{1}{8} \sum_{i=1}^{8}\left(X_{i}-\hat{\mu}\right)^{2}\right]=\frac{1}{8} \mathbb{E}\left[\sum_{i=1}^{8}\left(X_{i}^{2}-2 X_{i} \hat{\mu}+\hat{\mu}^{2}\right)\right]
$$

By noting that $\sum_{i=1}^{8} X_{i}=8 \hat{\mu}$ and that $\mathbb{E}\left[X_{1}^{2}\right]=\cdots=\mathbb{E}\left[X_{8}^{2}\right]$, we get

$$
\mathbb{E}\left[\hat{\sigma}^{2}\right]=\frac{1}{8} \mathbb{E}\left[\sum_{i=1}^{8} X_{i}^{2}-2 \cdot 8 \cdot \hat{\mu}^{2}+8 \hat{\mu}^{2}\right]=\mathbb{E}\left[X_{1}^{2}\right]-\mathbb{E}\left[\hat{\mu}^{2}\right]=\sigma^{2}-\mathbb{E}\left[X_{1}\right]^{2}-\operatorname{Var}(\hat{\mu})+\mathbb{E}[\hat{\mu}]^{2}
$$

By inserting

$$
\begin{aligned}
& \operatorname{Var}(\hat{\mu})=\operatorname{Var}\left(\frac{1}{8} \sum_{i=1}^{8} X_{i}\right)=\left(\frac{1}{8}\right)^{2} \sum_{i=1}^{8} \operatorname{Var}\left(X_{i}\right)=\frac{1}{8} \sigma^{2} \quad \text { and } \\
& \mathbb{E}[\hat{\mu}]^{2}=\mathbb{E}\left[\frac{1}{8} \sum_{i=1}^{8} X_{i}\right]^{2}=\left(\frac{1}{8} \sum_{i=1}^{8} \mathbb{E}\left[X_{i}\right]\right)^{2}=\mathbb{E}\left[X_{1}\right]^{2}
\end{aligned}
$$

we can conclude that

$$
\mathbb{E}\left[\hat{\sigma}^{2}\right]=\sigma^{2}-\mathbb{E}\left[X_{1}\right]^{2}-\frac{1}{8} \sigma^{2}+\mathbb{E}\left[X_{1}\right]^{2}=\frac{7}{8} \sigma^{2} \neq \sigma^{2}
$$

hence $\hat{\sigma}^{2}$ is not unbiased.
(d) Since our data is assumed to follow a Gaussian distribution and the variance is unknown, we perform a t-test. The test statistic is given by

$$
T=T\left(\log Y_{1}, \ldots, \log Y_{8}\right)=\sqrt{8} \frac{\frac{1}{8} \sum_{i=1}^{8} \log Y_{i}-\mu}{\sqrt{S^{2}}}
$$

where

$$
S^{2}=\frac{1}{7} \sum_{i=1}^{8}\left(\log Y_{i}-\frac{1}{8} \sum_{i=1}^{8} \log Y_{i}\right)^{2}
$$

Under H_{0}, T follows a Student- t distribution with 7 degrees of freedom. With the data given on the exercise sheet, the random variable S^{2} attains the value

$$
\frac{1}{7} \sum_{i=1}^{8}\left(x_{i}-\frac{1}{8} \sum_{i=1}^{8} x_{i}\right)^{2}=\frac{1}{7} \sum_{i=1}^{8}\left(x_{i}-7\right)^{2}=8
$$

and thus for T we get the observation

$$
\sqrt{8} \frac{\frac{1}{8} \sum_{i=1}^{8} x_{i}-\mu}{\sqrt{S^{2}}}=\sqrt{8} \frac{7-6}{\sqrt{8}}=1
$$

where we use that $\mu=6$ under H_{0}. Now the probability under H_{0} to observe a T that is at least as extreme as the observation 1 we got above, is

$$
\mathbb{P}[|T| \geq 1]=\mathbb{P}[T \geq 1]+\mathbb{P}[T \leq-1]=1-\mathbb{P}[T<1]+1-\mathbb{P}[T<1]=2-2 \mathbb{P}[T<1]
$$

where we used the symmetry of the Student- t distribution around 0 . The probability $\mathbb{P}[T<1]$ is approximately 0.83 , thus the p-value is given by

$$
\mathbb{P}[|T| \geq 1]=2-2 \mathbb{P}[T<1] \approx 2-2 \cdot 0.83=0.34
$$

This p-value is fairly high, hence we conclude that we can not reject the null hypothesis, for example, at significance level of 5% or 1%.

Solution 2.3 Variance Decomposition

By definition of the random variable X, the second moments exist. Hence, we have

$$
\mathbb{E}[\operatorname{Var}(X \mid \mathcal{G})]=\mathbb{E}\left[\mathbb{E}\left[X^{2} \mid \mathcal{G}\right]-(\mathbb{E}[X \mid \mathcal{G}])^{2}\right]=\mathbb{E}\left[X^{2}\right]-\mathbb{E}\left[(\mathbb{E}[X \mid \mathcal{G}])^{2}\right]
$$

and

$$
\operatorname{Var}(\mathbb{E}[X \mid \mathcal{G}])=\mathbb{E}\left[(\mathbb{E}[X \mid \mathcal{G}])^{2}\right]-\mathbb{E}[\mathbb{E}[X \mid \mathcal{G}]]^{2}=\mathbb{E}\left[(\mathbb{E}[X \mid \mathcal{G}])^{2}\right]-\mathbb{E}[X]^{2}
$$

Combining these two results, we get

$$
\mathbb{E}[\operatorname{Var}(X \mid \mathcal{G})]+\operatorname{Var}(\mathbb{E}[X \mid \mathcal{G}])=\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}=\operatorname{Var}(X)
$$

