Non-Life Insurance: Mathematics and Statistics

Solution sheet 3

Solution 3.1 No-Claims Bonus

(a) We define the following events:
$A=\{$ "no claims in the last six years" $\}$,
$B=\{$ "no claims in the last three years but at least one claim in the last six years" $\}$,
$C=\{$ "at least one claim in the last three years" $\}$.
Note that since the events A, B and C are disjoint and cover all possible outcomes, we have

$$
\mathbb{P}[A]+\mathbb{P}[B]+\mathbb{P}[C]=1
$$

i.e. it is sufficient to calculate two out of the three probabilities. Since the calculation of $\mathbb{P}[B]$ is slightly more involved, we will look at $\mathbb{P}[A]$ and $\mathbb{P}[C]$. Let N_{1}, \ldots, N_{6} be the number of claims of the last six years of our considered car driver, where N_{6} corresponds to the most recent year. By assumption, N_{1}, \ldots, N_{6} are independent Poisson random variables with frequency parameter $\lambda=0.2$. Therefore, we can calculate

$$
\mathbb{P}[A]=\mathbb{P}\left[N_{1}=0, \ldots, N_{6}=0\right]=\prod_{i=1}^{6} \mathbb{P}\left[N_{i}=0\right]=\prod_{i=1}^{6} \exp \{-\lambda\}=\exp \{-6 \lambda\}=\exp \{-1.2\}
$$

and, similarly,

$$
\mathbb{P}[C]=1-\mathbb{P}\left[C^{c}\right]=1-\mathbb{P}\left[N_{4}=0, N_{5}=0, N_{6}=0\right]=1-\exp \{-3 \lambda\}=1-\exp \{-0.6\}
$$

For the event B we get

$$
\mathbb{P}[B]=1-\mathbb{P}[A]-\mathbb{P}[C]=1-\exp \{-1.2\}-(1-\exp \{-0.6\})=\exp \{-0.6\}-\exp \{-1.2\}
$$

Thus the expected proportion q of the base premium that is still paid after the grant of the no-claims bonus is given by

$$
\begin{aligned}
q & =0.8 \cdot \mathbb{P}[A]+0.9 \cdot \mathbb{P}[B]+1 \cdot \mathbb{P}[C] \\
& =0.8 \cdot \exp \{-1.2\}+0.9 \cdot(\exp \{-0.6\}-\exp \{-1.2\})+1-\exp \{-0.6\} \\
& \approx 0.915 .
\end{aligned}
$$

If s denotes the surcharge on the base premium, then it has to satisfy the equation

$$
q(1+s) \cdot \text { base premium }=\text { base premium }
$$

which leads to

$$
s=\frac{1}{q}-1
$$

We conclude that the surcharge on the base premium is given by approximately 9.3%.
(b) We use the same notation as in (a). Since this time the calculation of $\mathbb{P}[B]$ is considerably more involved, we again look at $\mathbb{P}[A]$ and $\mathbb{P}[C]$. By assumption, conditionally given $\Theta, N_{1}, \ldots, N_{6}$ are independent Poisson random variables with frequency parameter $\Theta \lambda$, where $\lambda=0.2$. Therefore, we can calculate

$$
\begin{aligned}
\mathbb{P}[A] & =\mathbb{P}\left[N_{1}=0, \ldots, N_{6}=0\right] \\
& =\mathbb{E}\left[\mathbb{P}\left[N_{1}=0, \ldots, N_{6}=0 \mid \Theta\right]\right] \\
& =\mathbb{E}\left[\prod_{i=1}^{6} \mathbb{P}\left[N_{i}=0 \mid \Theta\right]\right] \\
& =\mathbb{E}\left[\prod_{i=1}^{6} \exp \{-\Theta \lambda\}\right] \\
& =\mathbb{E}[\exp \{-6 \Theta \lambda\}] \\
& =M_{\Theta}(-6 \lambda)
\end{aligned}
$$

where M_{Θ} denotes the moment generating function of Θ. Since $\Theta \sim \Gamma(1,1), M_{\Theta}$ is given by

$$
M_{\Theta}(r)=\frac{1}{1-r}
$$

for all $r<1$, which leads to

$$
\mathbb{P}[A]=\frac{1}{1+6 \lambda}=\frac{1}{2.2}
$$

Similarly, we get

$$
\mathbb{P}[C]=1-\mathbb{P}\left[C^{c}\right]=1-\mathbb{P}\left[N_{4}=0, N_{5}=0, N_{6}=0\right]=1-\frac{1}{1+3 \lambda}=1-\frac{1}{1.6}=\frac{0.6}{1.6}
$$

For the event B we get

$$
\mathbb{P}[B]=1-\mathbb{P}[A]-\mathbb{P}[C]=1-\frac{1}{2.2}-\frac{0.6}{1.6}=\frac{1}{1.6}-\frac{1}{2.2}
$$

Thus the expected proportion q of the base premium that is still paid after the grant of the no-claims bonus is given by

$$
\begin{aligned}
q & =0.8 \cdot \mathbb{P}[A]+0.9 \cdot \mathbb{P}[B]+1 \cdot \mathbb{P}[C] \\
& =0.8 \cdot \frac{1}{2.2}+0.9 \cdot\left(\frac{1}{1.6}-\frac{1}{2.2}\right)+\frac{0.6}{1.6} \\
& \approx 0.892
\end{aligned}
$$

We conclude that the surcharge s on the base premium is given by

$$
s=\frac{1}{q}-1 \approx 12.1 \%
$$

which is considerably bigger than in (a).

Solution 3.2 Central Limit Theorem

Let σ^{2} be the variance of the claim sizes and $x>0$. Then we have

$$
\begin{aligned}
\mathbb{P}\left[\left|\frac{1}{n} \sum_{i=1}^{n} Y_{i}-\mu\right|<\frac{x}{\sqrt{n}}\right] & =\mathbb{P}\left[\frac{1}{n} \sum_{i=1}^{n} Y_{i}-\mu<\frac{x}{\sqrt{n}}\right]-\mathbb{P}\left[\frac{1}{n} \sum_{i=1}^{n} Y_{i}-\mu \leq-\frac{x}{\sqrt{n}}\right] \\
& =\mathbb{P}\left[\sqrt{n} \frac{\frac{1}{n} \sum_{i=1}^{n} Y_{i}-\mu}{\sigma}<\frac{x}{\sigma}\right]-\mathbb{P}\left[\sqrt{n} \frac{\frac{1}{n} \sum_{i=1}^{n} Y_{i}-\mu}{\sigma} \leq-\frac{x}{\sigma}\right] \\
& =\mathbb{P}\left[Z_{n}<\frac{x}{\sigma}\right]-\mathbb{P}\left[Z_{n} \leq-\frac{x}{\sigma}\right]
\end{aligned}
$$

where

$$
Z_{n}=\sqrt{n} \frac{\frac{1}{n} \sum_{i=1}^{n} Y_{i}-\mu}{\sigma}
$$

According to the Central Limit Theorem, Z_{n} converges in distribution to a standard Gaussian random variable. Hence, if we write Φ for the distribution function of a standard Gaussian random variable, we have the approximation

$$
\mathbb{P}\left[\left|\frac{1}{n} \sum_{i=1}^{n} Y_{i}-\mu\right|<\frac{x}{\sqrt{n}}\right] \approx \Phi\left(\frac{x}{\sigma}\right)-\Phi\left(-\frac{x}{\sigma}\right) .
$$

On the one hand, as we are interested in a probabilty of at least 95%, we have to choose $x>0$ such that

$$
\Phi\left(\frac{x}{\sigma}\right)-\Phi\left(-\frac{x}{\sigma}\right)=0.95
$$

which implies

$$
\frac{x}{\sigma}=1.96
$$

It follows that

$$
\begin{equation*}
x=1.96 \cdot \sigma=1.96 \cdot \operatorname{Vco}\left(Y_{1}\right) \cdot \mu=1.96 \cdot 4 \cdot \mu \tag{1}
\end{equation*}
$$

On the other hand, as we want the deviation of the empirical mean from μ to be less than 1%, we set

$$
\frac{x}{\sqrt{n}}=0.01 \cdot \mu
$$

which implies

$$
\begin{equation*}
n=\frac{x^{2}}{0.01^{2} \cdot \mu^{2}} \tag{2}
\end{equation*}
$$

Combining (1) and (2), we conclude

$$
n=\frac{(1.96 \cdot 4 \cdot \mu)^{2}}{0.01^{2} \cdot \mu^{2}}=1.96^{2} \cdot 4^{2} \cdot 10^{\prime} 000=614^{\prime} 656
$$

Solution 3.3 Compound Binomial Distribution

For $\tilde{S} \sim \operatorname{CompBinom}(\tilde{v}, \tilde{p}, \tilde{G})$ with the random variable \tilde{Y}_{1} having distribution function \tilde{G} and moment generating function $M_{\tilde{Y}_{1}}$, the moment generating function $M_{\tilde{S}}$ of \tilde{S} is given by

$$
M_{\tilde{S}}(r)=\left(\tilde{p} M_{\tilde{Y}_{1}}(r)+1-\tilde{p}\right)^{\tilde{v}}
$$

for all $r \in \mathbb{R}$ for which $M_{\tilde{Y}_{1}}$ is defined. We calculate the moment generating function of $S_{\text {lc }}$ and show that it is exactly of the form given above. Since $S_{\text {lc }} \geq 0$ almost surely, its moment generating function is defined at least for all $r<0$. Thus, for $r<0$, we have

$$
\begin{aligned}
M_{S_{\mathrm{lc}}}(r) & =\mathbb{E}\left[\exp \left\{r \sum_{i=1}^{N} Y_{i} 1_{\left\{Y_{i}>M\right\}}\right\}\right] \\
& =\mathbb{E}\left[\prod_{i=1}^{N} \exp \left\{r Y_{i} 1_{\left\{Y_{i}>M\right\}}\right\}\right] \\
& =\mathbb{E}\left[\mathbb{E}\left[\prod_{i=1}^{N} \exp \left\{r Y_{i} 1_{\left\{Y_{i}>M\right\}}\right\} \mid N\right]\right] \\
& =\mathbb{E}\left[\prod_{i=1}^{N} \mathbb{E}\left[\exp \left\{r Y_{i} 1_{\left\{Y_{i}>M\right\}}\right\}\right]\right]
\end{aligned}
$$

where in the third equality we used the tower property of conditional expectation and in the fourth equality the independence between N and Y_{i}. For the inner expectation we get

$$
\begin{aligned}
\mathbb{E}\left[\exp \left\{r Y_{i} 1_{\left\{Y_{i}>M\right\}}\right\}\right] & =\mathbb{E}\left[\exp \left\{r Y_{i}\right\} \cdot 1_{\left\{Y_{i}>M\right\}}+1_{\left\{Y_{i} \leq M\right\}}\right] \\
& =\mathbb{E}\left[\exp \left\{r Y_{i}\right\} \mid Y_{i}>M\right] \mathbb{P}\left[Y_{i}>M\right]+\mathbb{P}\left[Y_{i} \leq M\right] \\
& =\mathbb{E}\left[\exp \left\{r Y_{i}\right\} \mid Y_{i}>M\right][1-G(M)]+G(M)
\end{aligned}
$$

First note that the distribution function of the random variable $Y_{i} \mid Y_{i}>M$ is G_{lc}. Moreover, since $Y_{i} \mid Y_{i}>M$ is greater than 0 almost surely, its moment generating function $M_{Y_{1} \mid Y_{1}>M}$ is defined for all $r<0$ and thus we can write

$$
\mathbb{E}\left[\exp \left\{r Y_{i} 1_{\left\{Y_{i}>M\right\}}\right\}\right]=M_{Y_{1} \mid Y_{1}>M}(r)[1-G(M)]+G(M)
$$

Hence we get

$$
\begin{aligned}
M_{S_{\mathrm{lc}}}(r) & =\mathbb{E}\left[\prod_{i=1}^{N}\left(M_{Y_{1} \mid Y_{1}>M}(r)[1-G(M)]+G(M)\right)\right] \\
& =\mathbb{E}\left[\left(M_{Y_{1} \mid Y_{1}>M}(r)[1-G(M)]+G(M)\right)^{N}\right] \\
& =\mathbb{E}\left[\exp \left\{N \log \left(M_{Y_{1} \mid Y_{1}>M}(r)[1-G(M)]+G(M)\right)\right\}\right] \\
& =M_{N}(\rho),
\end{aligned}
$$

where M_{N} is the moment generating function of N and

$$
\rho=\log \left(M_{Y_{1} \mid Y_{1}>M}(r)[1-G(M)]+G(M)\right)
$$

Since we have $N \sim \operatorname{Binom}(v, p), M_{N}(r)$ is given by

$$
M_{N}(r)=(p \exp \{r\}+1-p)^{v}
$$

Therefore, we get

$$
\begin{aligned}
M_{S_{\mathrm{lc}}}(r) & =\left[p\left(M_{Y_{1} \mid Y_{1}>M}(r)[1-G(M)]+G(M)\right)+1-p\right]^{v} \\
& =\left(p[1-G(M)] M_{Y_{1} \mid Y_{1}>M}(r)+1-p[1-G(M)]\right)^{v}
\end{aligned}
$$

Applying Lemma 1.3 of the lecture notes, we conclude that $S_{\text {lc }} \sim \operatorname{CompBinom}(\tilde{v}, \tilde{p}, \tilde{G})$ with $\tilde{v}=v$, $\tilde{p}=p[1-G(M)]$ and $\tilde{G}=G_{\mathrm{lc}}$.

