Solution 3.1 No-Claims Bonus

(a) We define the following events:

\[A = \{ \text{“no claims in the last six years”} \}, \]
\[B = \{ \text{“no claims in the last three years but at least one claim in the last six years”} \}, \]
\[C = \{ \text{“at least one claim in the last three years”} \}. \]

Note that since the events \(A \), \(B \) and \(C \) are disjoint and cover all possible outcomes, we have

\[P(A) + P(B) + P(C) = 1, \]

i.e. it is sufficient to calculate two out of the three probabilities. Since the calculation of \(P(B) \) is slightly more involved, we will look at \(P(A) \) and \(P(C) \). Let \(N_1, \ldots, N_6 \) be the number of claims of the last six years of our considered car driver, where \(N_6 \) corresponds to the most recent year. By assumption, \(N_1, \ldots, N_6 \) are independent Poisson random variables with frequency parameter \(\lambda = 0.2 \). Therefore, we can calculate

\[P(A) = P[N_1 = 0, \ldots, N_6 = 0] = \prod_{i=1}^{6} P[N_i = 0] = \prod_{i=1}^{6} \exp{-\lambda} = \exp{-6\lambda} = \exp{-1.2} \]

and, similarly,

\[P[C] = 1 - P[C^c] = 1 - P[N_4 = 0, N_5 = 0, N_6 = 0] = 1 - \exp{-3\lambda} = 1 - \exp{-0.6}. \]

For the event \(B \) we get

\[P(B) = 1 - P[A] - P[C] = 1 - \exp{-1.2} - (1 - \exp{-0.6}) = \exp{-0.6} - \exp{-1.2}. \]

Thus the expected proportion \(q \) of the base premium that is still paid after the grant of the no-claims bonus is given by

\[
q = 0.8 \cdot P[A] + 0.9 \cdot P[B] + 1 \cdot P[C] \\
= 0.8 \cdot \exp{-1.2} + 0.9 \cdot (\exp{-0.6} - \exp{-1.2}) + 1 - \exp{-0.6} \\
\approx 0.915.
\]

If \(s \) denotes the surcharge on the base premium, then it has to satisfy the equation

\[q(1 + s) \cdot \text{base premium} = \text{base premium}, \]

which leads to

\[s = \frac{1}{q} - 1. \]

We conclude that the surcharge on the base premium is given by approximately 9.3\%.
(b) We use the same notation as in (a). Since this time the calculation of \(\mathbb{P}[B] \) is considerably more involved, we again look at \(\mathbb{P}[A] \) and \(\mathbb{P}[C] \). By assumption, conditionally given \(\Theta, N_1, \ldots, N_6 \) are independent Poisson random variables with frequency parameter \(\Theta \lambda \), where \(\lambda = 0.2 \). Therefore, we can calculate

\[
\mathbb{P}[A] = \mathbb{P}[N_1 = 0, \ldots, N_6 = 0] = \mathbb{E}[\mathbb{P}[N_1 = 0, \ldots, N_6 = 0|\Theta]]
\]

\[
= \mathbb{E} \left[\prod_{i=1}^{6} \mathbb{P}[N_i = 0|\Theta] \right]
\]

\[
= \mathbb{E} \left[\prod_{i=1}^{6} \exp\left\{-\Theta \lambda \right\} \right]
\]

\[
= \mathbb{E}[\exp\left\{-6\Theta \lambda \right\}]
\]

\[
= M_\Theta(-6\lambda),
\]

where \(M_\Theta \) denotes the moment generating function of \(\Theta \). Since \(\Theta \sim \Gamma(1, 1) \), \(M_\Theta \) is given by

\[
M_\Theta(r) = \frac{1}{1 - r},
\]

for all \(r < 1 \), which leads to

\[
\mathbb{P}[A] = \frac{1}{1 + 6\lambda} = \frac{1}{2.2}.
\]

Similarly, we get

\[
\mathbb{P}[C] = 1 - \mathbb{P}[C^c] = 1 - \mathbb{P}[N_1 = 0, N_5 = 0, N_6 = 0] = 1 - \frac{1}{1 + 3\lambda} = 1 - \frac{1}{1.6} = \frac{0.6}{1.6}.
\]

For the event \(B \) we get

\[
\mathbb{P}[B] = 1 - \mathbb{P}[A] - \mathbb{P}[C] = 1 - \frac{1}{2.2} - \frac{0.6}{1.6} = \frac{1}{1.6} - \frac{1}{2.2}.
\]

Thus the expected proportion \(q \) of the base premium that is still paid after the grant of the no-claims bonus is given by

\[
q = 0.8 \cdot \mathbb{P}[A] + 0.9 \cdot \mathbb{P}[B] + 1 \cdot \mathbb{P}[C]
\]

\[
= 0.8 \cdot \frac{1}{2.2} + 0.9 \cdot \left(\frac{1}{1.6} - \frac{1}{2.2} \right) + \frac{0.6}{1.6}
\]

\[
\approx 0.892.
\]

We conclude that the surcharge \(s \) on the base premium is given by

\[
s = \frac{1}{q} - 1 \approx 12.1%,
\]

which is considerably bigger than in (a).

Solution 3.2 Central Limit Theorem

Let \(\sigma^2 \) be the variance of the claim sizes and \(x > 0 \). Then we have

\[
\mathbb{P}\left[\left| \frac{1}{n} \sum_{i=1}^{n} Y_i - \mu \right| < \frac{x}{\sqrt{n}} \right] = \mathbb{P}\left[\frac{1}{n} \sum_{i=1}^{n} Y_i - \mu < \frac{x}{\sqrt{n}} \right] - \mathbb{P}\left[\frac{1}{n} \sum_{i=1}^{n} Y_i - \mu > \frac{x}{\sqrt{n}} \right]
\]

\[
= \mathbb{P}\left[\frac{1}{n} \sum_{i=1}^{n} Y_i - \mu < \frac{x}{\sqrt{n}} \right] - \mathbb{P}\left[\frac{1}{n} \sum_{i=1}^{n} Y_i - \mu > \frac{x}{\sqrt{n}} \right]
\]

\[
= \mathbb{P}\left[\frac{1}{n} \sum_{i=1}^{n} Y_i - \mu < \frac{x}{\sqrt{n}} \right] - \mathbb{P}\left[\left| \frac{1}{n} \sum_{i=1}^{n} Y_i - \mu \right| > \frac{x}{\sqrt{n}} \right]
\]

\[
= \mathbb{P}\left[\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \frac{Y_i - \mu}{\sigma} < \frac{x}{\sigma} \right] - \mathbb{P}\left[\left| \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \frac{Y_i - \mu}{\sigma} \right| > \frac{x}{\sigma} \right],
\]

Updated: October 4, 2017
where
\[Z_n = \sqrt{n} \frac{1}{n} \sum_{i=1}^{n} Y_i - \mu. \]

According to the Central Limit Theorem, \(Z_n \) converges in distribution to a standard Gaussian random variable. Hence, if we write \(\Phi \) for the distribution function of a standard Gaussian random variable, we have the approximation
\[
P \left(\left| \frac{1}{n} \sum_{i=1}^{n} Y_i - \mu \right| < \frac{x}{\sqrt{n}} \right) \approx \Phi \left(\frac{x}{\sigma} \right) - \Phi \left(-\frac{x}{\sigma} \right).
\]

On the one hand, as we are interested in a probability of at least 95%, we have to choose \(x > 0 \) such that
\[
\Phi \left(\frac{x}{\sigma} \right) - \Phi \left(-\frac{x}{\sigma} \right) = 0.95,
\]
which implies
\[
x = 1.96 \cdot \sigma = 1.96 \cdot \text{Vco}(Y_1) \cdot \mu = 1.96 \cdot 4 \cdot \mu. \tag{1}
\]

On the other hand, as we want the deviation of the empirical mean from \(\mu \) to be less than 1%, we set
\[
x \sqrt{n} = 0.01 \cdot \mu,
\]
which implies
\[
n = \frac{x^2}{0.01^2 \cdot \mu^2}. \tag{2}
\]

Combining (1) and (2), we conclude
\[
n = \frac{(1.96 \cdot 4 \cdot \mu)^2}{0.01^2 \cdot \mu^2} = 1.96^2 \cdot 4^2 \cdot 10'000 = 614'656.
\]

Solution 3.3 Compound Binomial Distribution

For \(\tilde{S} \sim \text{CompBinom}(\tilde{v}, \tilde{p}, \tilde{G}) \) with the random variable \(\tilde{Y}_1 \) having distribution function \(\tilde{G} \) and moment generating function \(M_{\tilde{Y}_1} \), the moment generating function \(M_{\tilde{S}} \) of \(\tilde{S} \) is given by
\[
M_{\tilde{S}}(r) = (\tilde{p} M_{\tilde{Y}_1}(r) + 1 - \tilde{p})^{\tilde{v}},
\]
for all \(r \in \mathbb{R} \) for which \(M_{\tilde{Y}_1} \) is defined. We calculate the moment generating function of \(S_{lc} \) and show that it is exactly of the form given above. Since \(S_{lc} \geq 0 \) almost surely, its moment generating function is defined at least for all \(r < 0 \). Thus, for \(r < 0 \), we have
\[
M_{S_{lc}}(r) = \mathbb{E} \left[\exp \left\{ r \sum_{i=1}^{N} Y_i 1_{\{Y_i > M\}} \right\} \right]
\]
\[
= \mathbb{E} \left[\prod_{i=1}^{N} \exp \left\{ r Y_i 1_{\{Y_i > M\}} \right\} \right]
\]
\[
= \mathbb{E} \left[\prod_{i=1}^{N} \mathbb{E} \left[\exp \left\{ r Y_i 1_{\{Y_i > M\}} \right\} \mid N \right] \right]
\]
\[
= \mathbb{E} \left[\prod_{i=1}^{N} \mathbb{E} \left[\exp \left\{ r Y_i 1_{\{Y_i > M\}} \right\} \right] \right].
\]
where in the third equality we used the tower property of conditional expectation and in the fourth equality the independence between N and Y_i. For the inner expectation we get

$$
E \left[\exp \left\{ r Y_i \ 1_{\{Y_i > M\}} \right\} \right] = E \left[\exp \left\{ r Y_i \right\} \left| Y_i > M \right\} \mathbb{P}[Y_i > M] + \mathbb{P}[Y_i \leq M]
= E \left[\exp \left\{ r Y_i \right\} \left| Y_i > M \right\} \left[1 - G(M) \right] + G(M) \right].
$$

First note that the distribution function of the random variable $Y_i \mid Y_i > M$ is G_{lc}. Moreover, since $Y_i \mid Y_i > M$ is greater than 0 almost surely, its moment generating function $M_{Y_i \mid Y_i > M}$ is defined for all $r < 0$ and thus we can write

$$
E \left[\exp \left\{ r Y_i \ 1_{\{Y_i > M\}} \right\} \right] = M_{Y_i \mid Y_i > M}(r) \left[1 - G(M) \right] + G(M).
$$

Hence we get

$$
M_{S_{lc}}(r) = E \left[\prod_{i=1}^{N} (M_{Y_i \mid Y_i > M}(r) \left[1 - G(M) \right] + G(M)) \right]
= E \left[\left(M_{Y_i \mid Y_i > M}(r) \left[1 - G(M) \right] + G(M) \right) ^ N \right]
= E \left[\exp \left\{ N \log (M_{Y_i \mid Y_i > M}(r) \left[1 - G(M) \right] + G(M)) \right\} \right]
= M_{N}(\rho),
$$

where M_{N} is the moment generating function of N and

$$
\rho = \log (M_{Y_i \mid Y_i > M}(r) \left[1 - G(M) \right] + G(M)).
$$

Since we have $N \sim \text{Binom}(v, p)$, $M_{N}(r)$ is given by

$$
M_{N}(r) = (p \exp \{r\} + 1 - p)^v.
$$

Therefore, we get

$$
M_{S_{lc}}(r) = [p \left(M_{Y_i \mid Y_i > M}(r) \left[1 - G(M) \right] + G(M) \right) + 1 - p]^v
= (p[1 - G(M)]M_{Y_i \mid Y_i > M}(r) + 1 - p[1 - G(M)])^v.
$$

Applying Lemma 1.3 of the lecture notes, we conclude that $S_{lc} \sim \text{CompBinom}(\tilde{v}, \tilde{p}, \tilde{G})$ with $\tilde{v} = v, \tilde{p} = p[1 - G(M)]$ and $\tilde{G} = G_{lc}$.