Non-Life Insurance: Mathematics and Statistics

Solution sheet 5

Solution 5.1 Kolmogorov-Smirnov Test

The distribution function G_{0} of a Weibull distribution with shape parameter $\tau=\frac{1}{2}$ and scale parameter $c=1$ is given by

$$
G_{0}(y)=1-\exp \left\{-y^{1 / 2}\right\}
$$

for all $y \geq 0$. Note that since G_{0} is continuous, we are allowed to apply a Kolmogorov-Smirnov test. If $x=(-\log u)^{2}$ for some $u \in(0,1)$, we have

$$
G_{0}(x)=1-\exp \left\{-\left[(-\log u)^{2}\right]^{1 / 2}\right\}=1-\exp \{\log u\}=1-u
$$

Hence, if we apply G_{0} to x_{1}, \ldots, x_{5}, we get

$$
G_{0}\left(x_{1}\right)=\frac{2}{40}, \quad G_{0}\left(x_{2}\right)=\frac{3}{40}, \quad G_{0}\left(x_{3}\right)=\frac{5}{40}, \quad G_{0}\left(x_{4}\right)=\frac{6}{40}, \quad G_{0}\left(x_{5}\right)=\frac{30}{40} .
$$

Moreover, the empirical distribution function \hat{G}_{5} of the sample x_{1}, \ldots, x_{5} is given by

$$
\hat{G}_{5}(y)= \begin{cases}0 & \text { if } y<x_{1} \\ 1 / 5 & \text { if } x_{1} \leq y<x_{2} \\ 2 / 5 & \text { if } x_{2} \leq y<x_{3} \\ 3 / 5 & \text { if } x_{3} \leq y<x_{4} \\ 4 / 5 & \text { if } x_{4} \leq y<x_{5} \\ 1 & \text { if } y \geq x_{5}\end{cases}
$$

Now the Kolmogorov-Smirnov test statistic D_{5} is defined as

$$
D_{5}=\sup _{y \in \mathbb{R}}\left|\hat{G}_{5}(y)-G_{0}(y)\right| .
$$

Since G_{0} is continuous and strictly monotonically increasing with range $(0,1)$ and \hat{G}_{5} is piecewise constant and attains both the values 0 and 1 , it is sufficient to consider the discontinuities of \hat{G}_{5} to find D_{5}. We define

$$
f(s-)=\lim _{r \nearrow} f(r)
$$

for all $s \in \mathbb{R}$, where the function f stands for G_{0} and \hat{G}_{5}. Since G_{0} is continuous, we have $G_{0}(s-)=G_{0}(s)$ for all $s \in \mathbb{R}$. The values of G_{0} and \hat{G}_{5} and their differences can be summarized in the following table:

$x_{i}, x_{i}-$	$x_{1}-$	x_{1}	$x_{2}-$	x_{2}	$x_{3}-$	x_{3}	$x_{4}-$	x_{4}	$x_{5}-$	x_{5}
$\hat{G}_{5}(\cdot)$	0	$8 / 40$	$8 / 40$	$16 / 40$	$16 / 40$	$24 / 40$	$24 / 40$	$32 / 40$	$32 / 40$	1
$G_{0}(\cdot)$	$2 / 40$	$2 / 40$	$3 / 40$	$3 / 40$	$5 / 40$	$5 / 40$	$6 / 40$	$6 / 40$	$30 / 40$	$30 / 40$
$\left\|\hat{G}_{5}(\cdot)-G_{0}(\cdot)\right\|$	$2 / 40$	$6 / 40$	$5 / 40$	$13 / 40$	$11 / 40$	$19 / 40$	$18 / 40$	$26 / 40$	$2 / 40$	$10 / 40$

From this table we see that $D_{5}=26 / 40=0.65$. Let $q=5 \%$. By writing $K^{\leftarrow}(1-q)$ for the $(1-q)$-quantile of the Kolmogorov distribution, we have $K^{\leftarrow}(1-q)=1.36$. Since

$$
\frac{K^{\leftarrow}(1-q)}{\sqrt{5}} \approx 0.61<0.65=D_{5}
$$

we can reject the null hypothesis of having a Weibull distribution with shape parameter $\tau=\frac{1}{2}$ and scale parameter $c=1$ as claim size distribution.

Solution 5.2 Large Claims

(a) The density of a Pareto distribution with threshold $\theta=50$ and tail index $\alpha>0$ is given by

$$
f(x)=f_{\alpha}(x)=\frac{\alpha}{\theta}\left(\frac{x}{\theta}\right)^{-(\alpha+1)}
$$

for all $x \geq \theta$. Using the independence of Y_{1}, \ldots, Y_{n}, the joint likelihood function $\mathcal{L}_{\mathbf{Y}}(\alpha)$ for the observation $\mathbf{Y}=\left(Y_{1}, \ldots, Y_{n}\right)$ can be written as

$$
\mathcal{L}_{\mathbf{Y}}(\alpha)=\prod_{i=1}^{n} f_{\alpha}\left(Y_{i}\right)=\prod_{i=1}^{n} \frac{\alpha}{\theta}\left(\frac{Y_{i}}{\theta}\right)^{-(\alpha+1)}=\prod_{i=1}^{n} \alpha \theta^{\alpha} Y_{i}^{-(\alpha+1)}
$$

whereas the joint log-likelihood function $\ell_{\mathbf{Y}}(\alpha)$ is given by
$\ell_{\mathbf{Y}}(\alpha)=\log \mathcal{L}_{\mathbf{Y}}(\alpha)=\sum_{i=1}^{n} \log \alpha+\alpha \log \theta-(\alpha+1) \log Y_{i}=n \log \alpha+n \alpha \log \theta-(\alpha+1) \sum_{i=1}^{n} \log Y_{i}$.
Now the MLE $\hat{\alpha}_{n}^{\text {MLE }}$ is defined as

$$
\hat{\alpha}_{n}^{\mathrm{MLE}}=\arg \max _{\alpha>0} \mathcal{L}_{\mathbf{Y}}(\alpha)=\arg \max _{\alpha>0} \ell_{\mathbf{Y}}(\alpha) .
$$

Calculating the first and the second derivative of $\ell_{\mathbf{Y}}(\alpha)$ with respect to α, we get

$$
\begin{aligned}
\frac{\partial}{\partial \alpha} \ell_{\mathbf{Y}}(\alpha) & =\frac{n}{\alpha}+n \log \theta-\sum_{i=1}^{n} \log Y_{i} \text { and } \\
\frac{\partial^{2}}{\partial \alpha^{2}} \ell_{\mathbf{Y}}(\alpha) & =\frac{\partial}{\partial \alpha}\left(\frac{n}{\alpha}+n \log \theta-\sum_{i=1}^{n} \log Y_{i}\right)=-\frac{n}{\alpha^{2}}<0
\end{aligned}
$$

for all $\alpha>0$, from which we can conclude that $\ell_{\mathbf{Y}}(\alpha)$ is strictly concave in α. Thus $\hat{\alpha}_{n}^{\text {MLE }}$ can be found by setting the first derivative of $\ell_{\mathbf{Y}}(\alpha)$ equal to 0 . We get
(b) Let $\hat{\alpha}$ denote the unbiased version of the MLE for the storm and flood data given on the exercise sheet. Since we observed 15 storm and flood events, we have $n=15$. Thus $\hat{\alpha}$ can be calculated as

$$
\hat{\alpha}=\frac{n-1}{n}\left(\frac{1}{n} \sum_{i=1}^{n} \log Y_{i}-\log \theta\right)^{-1}=\frac{14}{15}\left(\frac{1}{15} \sum_{i=1}^{15} \log Y_{i}-\log 50\right)^{-1} \approx 0.98
$$

where for Y_{1}, \ldots, Y_{15} we plugged in the observed claim sizes given on the exercise sheet. Note that with $\hat{\alpha}=0.98<1$, the expectation of the claim sizes does not exist.
(c) We define N_{1}, \ldots, N_{20} to be the number of yearly storm and flood events during the twenty years $1986-2005$. By assumption, we have

$$
N_{1}, \ldots, N_{20} \stackrel{\text { i.i.d. }}{\sim} \operatorname{Poi}(\lambda)
$$

Using Estimator 2.32 of the lecture notes with $v_{1}=\cdots=v_{20}=1$, the MLE $\hat{\lambda}$ of λ is given by

$$
\hat{\lambda}=\frac{1}{\sum_{i=1}^{20} 1} \sum_{i=1}^{20} N_{i}=\frac{1}{20} \sum_{i=1}^{20} N_{i} .
$$

Since we observed 15 storm and flood events in total, we get

$$
\hat{\lambda}=\frac{15}{20}=0.75
$$

(d) Using Proposition 2.11 of the lecture notes, the expected yearly claim amount $\mathbb{E}[S]$ of storm and flood events is given by

$$
\mathbb{E}[S]=\lambda \mathbb{E}\left[\min \left\{Y_{1}, M\right\}\right]
$$

The expected value of $\min \left\{Y_{1}, M\right\}$ can be calculated as

$$
\begin{aligned}
\mathbb{E}\left[\min \left\{Y_{1}, M\right\}\right] & =\mathbb{E}\left[\min \left\{Y_{1}, M\right\} 1_{\left\{Y_{1} \leq M\right\}}\right]+\mathbb{E}\left[\min \left\{Y_{1}, M\right\} 1_{\left\{Y_{1}>M\right\}}\right] \\
& =\mathbb{E}\left[Y_{1} 1_{\left\{Y_{1} \leq M\right\}}\right]+\mathbb{E}\left[M 1_{\left\{Y_{1}>M\right\}}\right] \\
& =\mathbb{E}\left[Y_{1} 1_{\left\{Y_{1} \leq M\right\}}\right]+M \mathbb{P}\left[Y_{1}>M\right]
\end{aligned}
$$

where for $\mathbb{E}\left[Y_{1} 1_{\left\{Y_{1} \leq M\right\}}\right]$ and $\mathbb{P}\left[Y_{1}>M\right]$ we have

$$
\begin{aligned}
\mathbb{E}\left[Y_{1} 1_{\left\{Y_{1} \leq M\right\}}\right] & =\int_{\theta}^{\infty} x 1_{\{x \leq M\}} f(x) d x \\
& =\int_{\theta}^{M} x \frac{\alpha}{\theta}\left(\frac{x}{\theta}\right)^{-(\alpha+1)} d x \\
& =\alpha \theta^{\alpha}\left[\frac{1}{1-\alpha} x^{1-\alpha}\right]_{\theta}^{M} \\
& =\frac{\alpha}{1-\alpha} \theta^{\alpha} M^{1-\alpha}-\frac{\alpha}{1-\alpha} \theta \\
& =\frac{\alpha}{1-\alpha} \theta\left(\frac{M}{\theta}\right)^{1-\alpha}-\frac{\alpha}{1-\alpha} \theta \\
& =\theta \frac{\alpha}{1-\alpha}\left[\left(\frac{M}{\theta}\right)^{1-\alpha}-1\right] \\
& =\theta \frac{\alpha}{\alpha-1}\left[1-\left(\frac{M}{\theta}\right)^{1-\alpha}\right]
\end{aligned}
$$

and

$$
M \mathbb{P}\left[Y_{1}>M\right]=M\left(1-\mathbb{P}\left[Y_{1} \leq M\right]\right)=M\left(1-\left[1-\left(\frac{M}{\theta}\right)^{-\alpha}\right]\right)=\theta\left(\frac{M}{\theta}\right)^{1-\alpha}
$$

Hence we get

$$
\mathbb{E}\left[\min \left\{Y_{1}, M\right\}\right]=\theta \frac{\alpha}{\alpha-1}\left[1-\left(\frac{M}{\theta}\right)^{1-\alpha}\right]+\theta\left(\frac{M}{\theta}\right)^{1-\alpha}=\theta \frac{\alpha}{\alpha-1}-\frac{\theta}{\alpha-1}\left(\frac{M}{\theta}\right)^{1-\alpha}
$$

Replacing the unknown parameters by their estimates, we get for the estimated expected total yearly claim amount $\hat{\mathbb{E}}[S]$:
$\hat{\mathbb{E}}[S]=\hat{\lambda}\left[\frac{\theta}{1-\hat{\alpha}}\left(\frac{M}{\theta}\right)^{1-\hat{\alpha}}-\frac{\hat{\alpha}}{1-\hat{\alpha}} \theta\right] \approx 0.75\left[\frac{50}{1-0.98}\left(\frac{2^{\prime} 000}{50}\right)^{1-0.98}-\frac{0.98 \cdot 50}{1-0.98}\right] \approx 180.4$.
(e) Since $S \sim \operatorname{CompPoi}(\lambda, G)$, we can write S as

$$
S=\sum_{i=1}^{N} Y_{i}
$$

where $N \sim \operatorname{Poi}(\lambda), Y_{1}, Y_{2}, \ldots$ are i.i.d. with distribution function G and N and Y_{1}, Y_{2}, \ldots are independent. Since we are only interested in events that exceed the level of $M=2$ billions CHF, we define S_{M} as

$$
S_{M}=\sum_{i=1}^{N} Y_{i} 1_{\left\{Y_{i}>M\right\}}
$$

Due to Theorem 2.14 of the lecture notes, we have $S_{M} \sim \operatorname{CompPoi}\left(\lambda_{M}, G_{M}\right)$ for some distribution function G_{M} and

$$
\lambda_{M}=\lambda \mathbb{P}\left[Y_{1}>M\right]=\lambda\left(1-\mathbb{P}\left[Y_{1} \leq M\right]\right)=\lambda\left(1-\left[1-\left(\frac{M}{\theta}\right)^{-\alpha}\right]\right)=\lambda\left(\frac{M}{\theta}\right)^{-\alpha}
$$

Defining a random variable $N_{M} \sim \operatorname{Poi}\left(\lambda_{M}\right)$, the probability that we observe at least one storm and flood event in a particular year is given by

$$
\mathbb{P}\left[N_{M} \geq 1\right]=1-\mathbb{P}\left[N_{M}=0\right]=1-\exp \left\{-\lambda_{M}\right\}=1-\exp \left\{-\lambda\left(\frac{M}{\theta}\right)^{-\alpha}\right\}
$$

If we replace the unknown parameters by their estimates, this probability can be estimated by

$$
\hat{\mathbb{P}}\left[N_{M} \geq 1\right]=1-\exp \left\{-\hat{\lambda}\left(\frac{M}{\theta}\right)^{-\hat{\alpha}}\right\} \approx 1-\exp \left\{-0.75\left(\frac{2^{\prime} 000}{50}\right)^{-0.98}\right\} \approx 0.02
$$

Note that in particular such a flood storm and flood event that exceeds the level of 2 billions CHF is expected roughly every $1 / 0.02=50$ years.

Solution 5.3 Pareto Distribution

The density g and the distribution function G of Y are given by

$$
g(x)=\frac{\alpha}{\theta}\left(\frac{x}{\theta}\right)^{-(\alpha+1)} \quad \text { and } \quad G(x)=1-\left(\frac{x}{\theta}\right)^{-\alpha}
$$

for all $x \geq \theta$.
(a) The survival function $\bar{G}=1-G$ of Y is

$$
\bar{G}(x)=1-G(x)=\left(\frac{x}{\theta}\right)^{-\alpha}
$$

for all $x \geq \theta$. Hence, for all $t>0$ we have

$$
\lim _{x \rightarrow \infty} \frac{\bar{G}(x t)}{\bar{G}(x)}=\lim _{x \rightarrow \infty} \frac{(x t / \theta)^{-\alpha}}{(x / \theta)^{-\alpha}}=t^{-\alpha}
$$

Thus, by definition, the survival function of Y is regularly varying at infinity with tail index α.
(b) Let $\theta \leq u_{1}<u_{2}$ and $\alpha \neq 1$. Then the expected value of Y within the layer $\left(u_{1}, u_{2}\right]$ can be calculated as

$$
\mathbb{E}\left[Y 1_{\left\{u_{1}<Y \leq u_{2}\right\}}\right]=\int_{\theta}^{\infty} x 1_{\left\{u_{1}<x \leq u_{2}\right\}} g(x) d x=\int_{u_{1}}^{u_{2}} x \frac{\alpha}{\theta}\left(\frac{x}{\theta}\right)^{-(\alpha+1)} d x=\alpha \theta \int_{u_{1}}^{u_{2}} \frac{1}{\theta}\left(\frac{x}{\theta}\right)^{-\alpha} d x
$$

In the case $\alpha \neq 1$, we get

$$
\mathbb{E}\left[Y 1_{\left\{u_{1}<Y \leq u_{2}\right\}}\right]=\alpha \theta\left[-\frac{1}{\alpha-1}\left(\frac{x}{\theta}\right)^{-\alpha+1}\right]_{u_{1}}^{u_{2}}=\theta \frac{\alpha}{\alpha-1}\left[\left(\frac{u_{1}}{\theta}\right)^{-\alpha+1}-\left(\frac{u_{2}}{\theta}\right)^{-\alpha+1}\right]
$$

and if $\alpha=1$, we get

$$
\mathbb{E}\left[Y 1_{\left\{u_{1}<Y \leq u_{2}\right\}}\right]=\theta \int_{u_{1}}^{u_{2}} \frac{1}{x} d x=\theta \log \left(\frac{u_{2}}{u_{1}}\right) .
$$

(c) Let $\alpha>1$ and $y>\theta$. Then the expected value μ_{Y} of Y is given by

$$
\mu_{Y}=\theta \frac{\alpha}{\alpha-1}
$$

and, similarly as in part (b), we get

$$
\mathbb{E}\left[Y 1_{\{Y \leq y\}}\right]=\mathbb{E}\left[Y 1_{\{\theta<Y \leq y\}}\right]=\theta \frac{\alpha}{\alpha-1}\left[\left(\frac{\theta}{\theta}\right)^{-\alpha+1}-\left(\frac{y}{\theta}\right)^{-\alpha+1}\right]=\mu_{Y}\left[1-\left(\frac{y}{\theta}\right)^{-\alpha+1}\right]
$$

Hence, for the loss size index function for level $y>\theta$ we have

$$
\mathcal{I}[G(y)]=\frac{1}{\mu_{Y}} \mathbb{E}\left[Y 1_{\{Y \leq y\}}\right]=1-\left(\frac{y}{\theta}\right)^{-\alpha+1} \in[0,1]
$$

(d) Let $\alpha>1$ and $u>\theta$. The mean excess function of Y above u can be calculated as

$$
e(u)=\mathbb{E}[Y-u \mid Y>u]=\mathbb{E}[Y \mid Y>u]-u=\frac{\mathbb{E}\left[Y 1_{\{Y>u\}}\right]}{\mathbb{P}[Y>u]}-u=\frac{\mathbb{E}\left[Y 1_{\{Y>u\}}\right]}{\bar{G}(u)}-u
$$

where for $\mathbb{E}\left[Y 1_{\{Y>u\}}\right]$ we have, similarly as in part (b),

$$
\mathbb{E}\left[Y 1_{\{Y>u\}}\right]=\alpha \theta\left[-\frac{1}{\alpha-1}\left(\frac{x}{\theta}\right)^{-\alpha+1}\right]_{u}^{\infty}=\frac{\alpha}{\alpha-1} \theta\left(\frac{u}{\theta}\right)^{-\alpha+1}=\frac{\alpha}{\alpha-1} u \bar{G}(u)
$$

Thus we get

$$
e(u)=\frac{\alpha}{\alpha-1} u-u=\frac{1}{\alpha-1} u
$$

Note that the mean excess function $u \mapsto e(u)$ has slope $\frac{1}{\alpha-1}>0$.

