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Solution 7.1 Hill Estimator

An example of a possible R-code is given below.

1 ### Generate 300 independent observations coming from a
2 ### Pareto distribution with threshold theta = 10 millions
3 ### and tail index alpha = 2.
4 ### We use that if Z ~ Gamma (1, alpha),
5 ### then theta*exp{Z} ~ Pareto (theta , alpha).
6 ### Note that for the Gamma distribution we have:
7 ### scale parameter in R = 1/(scale parameter in lecture notes)
8 n <- 300
9 theta <- 10 ### in millions

10 alpha <- 2
11 set.seed (100) ### for reproducibility
12 data .1 <- rgamma (n, shape = 1, scale = 1 / alpha)
13 data <- theta * exp(data .1)
14
15 ### Order the data
16 data. ordered <- data[order(data , decreasing = FALSE)]
17
18 ### Take the logarithm
19 log.data. ordered <- log(data. ordered )
20
21 ### Number of observations
22 n.obs <- n:1
23
24 ### Hill estimator
25 hill. estimator <- (( sum(log.data. ordered )
26 - cumsum (log.data. ordered ) + log.data. ordered ) / n.obs
27 - log.data. ordered )^( -1)
28
29 ### Confidence bounds (see Lemma 3.7 of the lecture notes)
30 upper.bound <- hill. estimator + sqrt(n.obs ^2 / ((n.obs - 1)^2
31 * (n.obs - 2)) * hill. estimator ^2)
32 lower.bound <- hill. estimator - sqrt(n.obs ^2 / ((n.obs - 1)^2
33 * (n.obs - 2)) * hill. estimator ^2)
34
35 ### Hill plot and log -log plot next to each other
36 par(mfrow=c(1 ,2))
37
38 ### Hill plot
39 plot(hill.estimator , ylim = c(alpha -1, alpha +2) , xaxt="n",
40 xlab = " number of observations ",
41 ylab = " Pareto tail index parameter ", cex = 0.5)
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42 title(main = "Hill plot for alpha")
43 axis (1,at=c(1, seq(from = n / 10, to = n, by = n / 10)),
44 c(seq(from = n, to = n / 10, by = -n / 10) ,1))
45 lines(upper.bound)
46 lines(lower.bound)
47 abline (h = alpha , col = "blue")
48 legend (" topleft ", col = c("blue","black"), lty = c(1,NA),
49 pch = c(NA ,1) ,
50 legend = c(" Pareto distribution "," observations "))
51
52 ### True survival function (= 1 - true distribution function )
53 true.sf <- (data. ordered / theta)^(- alpha)
54
55 ### Empirical survival function (= 1 - empirical survival function )
56 empirical .sf <- 1 - (1:n) / n
57
58 ### Log -log plot
59 plot(log.data.ordered ,log(true.sf), xlab = "log(claim size)",
60 ylab = "log (1 - distribution function )",
61 cex= 0.5, col = "blue")
62 title(main = "log -log plot")
63 lines(log.data.ordered , log(true.sf), col = "blue")
64 points (log.data.ordered , log( empirical .sf), col = "black",
65 cex= 0.5)
66 legend (" bottomleft ", col = c("blue","black"), lty = c(1,NA),
67 pch = c(1 ,1) , legend = c(" Pareto distribution "," observations "))

The Hill plot (on the left) and the log-log plot (on the right) look as follows:
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Note that even though we sampled from a Pareto distribution with tail index α = 2, it is not at all
clear to see that the data comes from a Pareto distribution. In the Hill plot we see that, first, the
estimates of α seem more or less correct, but starting from the 180 largest observations, the plot
suggests a higher α or even another distribution. In the log-log plot we see that for small-sized and
medium-sized claims the fit seems to be fine. But looking at the largest claims, we would conclude
that our data is not as heavy-tailed as a true Pareto distribution with threshold θ = 10 millions and
tail index α = 2 would suggest. We are confronted with these problems even though we sampled
directly from a Pareto distribution. This might indicate the difficulties one faces when trying to fit
such a distribution to a real data set, which, to make matters even worse, often contains far less
than 300 observations as in this example and moreover the observations may be contaminated by
other distributions.

Solution 7.2 Approximations

Note that if Y ∼ Γ(γ = 100, c = 1
10 ), then

E[Y ] = γ

c
= 100

1/10 = 1’000,

E[Y 2] = γ(γ + 1)
c2 = 100 · 101

1/100 = 1’010’000 and

E[Y 3] = γ(γ + 1)(γ + 2)
c3 = 100 · 101 · 102

1/1000 = 1’030’200’000.

Let MY denote the moment generating function of Y . According to formula (1.3) of the lecture
notes, we have

M ′′′Y (0) = d3

dr3MY (r)
∣∣∣∣
r=0

= E[Y 3].

For the total claim amount S, we can use Proposition 2.11 of the lecture notes to get

E[S] = λvE[Y ] = 1’000 · 1’000 = 1’000’000,
Var(S) = λvE[Y 2] = 1’000 · 1’010’000 = 1’010’000’000 and
MS(r) = exp{λv[MY (r)− 1]}.

In order to get the skewness ςS of S, which we will need for the translated gamma and the log-normal
approximations, we can use the third equation given in the formulas (1.5) of the lecture notes:

ςS ·Var(S)3/2 = d3

dr3 logMS(r)
∣∣∣∣
r=0

= λv
d3

dr3MY (r)
∣∣∣∣
r=0

= λvM ′′′Y (0) = λvE[Y 3],

from which we can conclude that

ςS = λvE[Y 3]
(λvE[Y 2])3/2 = E[Y 3]√

λvE[Y 2]3/2
= 1’030’200’000√

1’000(1’010’000)3/2
≈ 0.0321.

Let FS denote the distribution function of S. Then, since FS is continuous and strictly increasing,
the quantiles q0.95 and q0.99 can be calculated as

q0.95 = F−1
S (0.95) and q0.99 = F−1

S (0.99).

(a) According to Section 4.1.1 of the lecture notes, the normal approximation is given by

FS(x) ≈ Φ
(
x− λvE[Y ]√
λvE[Y 2]

)
,
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for all x ∈ R, where Φ is the standard Gaussian distribution function. For all α ∈ (0, 1), we
have

F−1
S (α) = λvE[Y ] +

√
λvE[Y 2] · Φ−1(α)

= 1’000 · 1’000 +
√

1’000 · 1’010’000 · Φ−1(α)
≈ 1’000’000 + 31’780.5 · Φ−1(α).

In particular, we get

q0.95 = F−1
S (0.95) ≈ 1’000’000+31’780.5·Φ−1(0.95) ≈ 1’000’000+31’780.5·1.645 = 1’052’279

and

q0.99 = F−1
S (0.99) ≈ 1’000’000+31’780.5·Φ−1(0.99) ≈ 1’000’000+31’780.5·2.325 = 1’073’890.

Note that the normal approximation also allows for negative claims S, which under our model
assumption is excluded. The probability for negative claims S in the normal approximation
can be calculated as

FS(0) ≈ Φ
(

0− λvE[Y ]√
λvE[Y 2]

)
≈ Φ

(
−1’000’000

31’780.5

)
≈ Φ(−31.5) ≈ 4.34 · 10−218,

which of course is positive, but very close to 0.

(b) According to Section 4.1.2 of the lecture notes, in the translated gamma approximation we
model S by the random variable

X = k + Z,

where k ∈ R and Z ∼ Γ(γ̃, c̃). The three parameters k, γ̃ and c̃ can be determined by solving
the equations

E[X] = E[S], Var(X) = Var(S) and ςX = ςS , (1)

where ςX is the skewness parameter of X. Since Z ∼ Γ(γ̃, c̃), we can use the results given in
Section 3.2.1 of the lecture notes to calculate

E[X] = E[k + Z] = k + E[Z] = k + γ̃

c̃
,

Var(X) = Var(k + Z) = Var(Z) = γ̃

c̃2 and

ςX =
E
[
(X − E[X])3]
Var(X)3/2 =

E
[
(k + Z − E[k + Z])3]
Var(k + Z)3/2 =

E
[
(Z − E[Z])3]
Var(Z)3/2 = ςZ = 2√

γ̃
.

Using equations (1), we get

2√
γ̃

= ςS ⇐⇒ γ̃ = 4
ς2
S

≈ 3’883,

γ̃

c̃2 = Var(S) ⇐⇒ c̃ =

√
γ̃

Var(S) ≈ 0.002 and

k + γ̃

c̃
= E[S] ⇐⇒ k = E[S]− γ̃

c̃
= E[S]−

√
γ̃Var(S) ≈ −980’392.

If we write FZ for the distribution function of Z ∼ Γ(γ̃ ≈ 3’883, c̃ ≈ 0.002), using the
translated gamma approximation, we get

FS(x) = P[S ≤ x] ≈ P[X ≤ x] = P[k + Z ≤ x] = P[Z ≤ x− k] = FZ(x− k),
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for all x ∈ R. Now, for all α ∈ (0, 1), we have

F−1
S (α) ≈ k + F−1

Z (α)

In particular, we get

q0.95 = F−1
S (0.95) ≈ k + F−1

Z (0.95) ≈ −980’392 + 2’032’955 = 1’052’563

and
q0.99 = F−1

S (0.99) ≈ k + F−1
Z (0.99) ≈ −980’392 + 2’055’074 = 1’074’682.

Note that since k < 0, the translated gamma approximation in this example also allows
for negative claims S, which under our model assumption is excluded. The probability for
negative claims S can be calculated as

FS(0) ≈ FZ(0− k) ≈ FZ(980’392) ≈ 4.87 · 10−320,

which is basically 0.

(c) According to Section 4.1.2 of the lecture notes, in the translated log-normal approximation
we model S by the random variable

X = k + Z,

where k ∈ R and Z ∼ LN(µ, σ2). Similarly as in part (b), the three parameters k, µ and σ2

can be determined by solving the equations

E[X] = E[S], Var(X) = Var(S) and ςX = ςS . (2)

Since Z ∼ LN(µ, σ2), we can use the results given in Section 3.2.3 of the lecture notes to
calculate

E[X] = E[k + Z] = k + E[Z] = k + exp
{
µ+ σ2/2

}
,

Var(X) = Var(k + Z) = Var(Z) = exp
{

2µ+ σ2} (exp
{
σ2}− 1

)
and

ςX = ςZ =
(
exp

{
σ2}+ 2

) (
exp

{
σ2}− 1

)1/2
.

Using the third equation in (2), we get(
exp

{
σ2}+ 2

) (
exp

{
σ2}− 1

)1/2 = ςS ≈ 0.0321 ⇐⇒ σ2 ≈ 0.00012,

which was found using a computer software. Using the second equation in (2), we get

exp
{

2µ+ σ2} (exp
{
σ2}− 1

)
= Var(S) ⇐⇒ µ = 1

2

(
log
[(

exp
{
σ2}− 1

)−1 Var(S)
]
− σ2

)
,

which implies
µ ≈ 14.875.

Finally, using the first equation in (2), we get

k + exp
{
µ+ σ2/2

}
= E[S] ⇐⇒ k = E[S]− exp

{
µ+ σ2/2

}
≈ −2’391’769.

If we write FW for the distribution function of W = logZ ∼ N (µ ≈ 14.875, σ2 ≈ 0.00012),
using the translated log-normal approximation, we get

FS(x) = P[S ≤ x] ≈ P[X ≤ x] = P[k + Z ≤ x] = P[logZ ≤ log(x− k)] = FW (log[x− k]),
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for all x ∈ R. Now, for all α ∈ (0, 1), we have

F−1
S (α) ≈ k + exp{F−1

W (α)}.

In particular, we get

q0.95 = F−1
S (0.95) ≈ k + exp{F−1

W (0.95)} ≈ −2’391’769 + 3’444’295 = 1’052’527

and

q0.99 = F−1
S (0.99) ≈ k + exp{F−1

W (0.99)} ≈ −2’391’769 + 3’466’359 = 1’074’590.

Note that since k < 0, the translated log-normal approximation in this example also allows
for negative claims S, which under our model assumption is excluded. The probability for
negative claims S can be calculated as

FS(0) ≈ FZ(0− k) = FW (log[−k]) ≈ FW (log 2’391’769) ≈ 1.92 · 10−304,

which is basically 0.

(d) We observe that with all the three approximations applied in parts (a) - (c) we get almost the
same results. In particular, the normal approximation does not provide estimates that deviate
significantly from the ones we get using the translated gamma and the translated log-normal
approximations. This is due to the fact, that λv = 1’000 is large enough and the gamma
distribution assumed for the claim sizes is not a heavy tailed distribution. Moreover, the
skewness ςS = 0.0321 of S is rather small, hence the normal approximation is a valid model
in this example. Note that in all the three approximations we allow for negative claims S,
which actually should not be possible under our model assumption. However, the probability
of observe a negative claim S is vanishingly small.

Solution 7.3 Akaike Information Criterion and Bayesian Information Criterion

(a) By definition, the MLEs
(
γ̂MLE, ĉMLE) maximize the log-likelihood function `Y. In particular,

we have
`Y
(
γ̂MLE, ĉMLE) ≥ `Y (γ, c) ,

for all (γ, c) ∈ R+ × R+.
If we write d(MLE) and d(MM) for the number of estimated parameters in the MLE model and
in the method of moments model, respectively, we have d(MLE) = d(MM) = 2. The AIC value
AIC(MLE) of the MLE model and the AIC value AIC(MM) of the method of moments model
are then given by

AIC(MLE) = −2`Y
(
γ̂MLE, ĉMLE)+ 2d(MLE) = −2 · 1264.013 + 2 · 2 = −2524.026 and

AIC(MM) = −2`Y
(
γ̂MM, ĉMM)+ 2d(MM) = −2 · 1264.171 + 2 · 2 = −2524.342.

According to the AIC, the model with the smallest AIC value should be preferred. Since
AIC(MLE) < AIC(MM), we choose the MLE fit.

(b) If we write d(gam) and d(exp) for the number of estimated parameters in the gamma model
and in the exponential model, respectively, we have d(gam) = 2 and d(exp) = 1. The AIC value
AIC(gam) of the gamma model and the AIC value AIC(exp) of the exponential model are then
given by

AIC(gam) = −2`(gam)
Y

(
γ̂MLE, ĉMLE)+ 2d(gam) = −2 · 1264.013 + 2 · 2 = −2524.026 and

AIC(exp) = −2`(exp)
Y

(
ĉMLE)+ 2d(exp) = −2 · 1264.169 + 2 · 1 = −2526.338.
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Since AIC(gam) > AIC(exp), we choose the exponential model.
The BIC value BIC(gam) of the gamma model and the BIC value BIC(exp) of the exponential
model are given by

BIC(gam) = −2`(gam)
Y

(
γ̂MLE, ĉMLE)+ d(gam) · log 1000

= −2 · 1264.013 + 2 · log 1000
≈ −2514.21

and

BIC(exp) = −2`(exp)
Y

(
ĉMLE)+ d(exp) · log 1000

= −2 · 1264.169 + log 1000
≈ −2521.43.

According to the BIC, the model with the smallest BIC value should be preferred. Since
BIC(gam) > BIC(exp), we choose the exponential model. Note that the gamma model gives
the better in-sample fit than the exponential model. But if we adjust this in-sample fit by the
number of parameters used, we conclude that the exponential model probably has the better
out-of-sample performance (better predictive power).
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