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Solution 8.1 Panjer Algorithm

For the expected yearly claim amount π0 we have

π0 = E[S] = E[N ]E[Y1] = 1 · E[k + Z] = k + E[Z] = k + exp
{
µ+ σ2

2

}
≈ 4123.872.

Let Y +
i denote the discretized claim sizes using a span of s = 10, where we put all the probability

mass to the upper end of the intervals. If we write gm = P[Y +
1 = sm] for m ∈ N, then we have

g1 = g2 = · · · = g10 = 0,

since P[Y +
1 ≤ k] = P[Z ≤ 0] = 0 and k = 10s. For all l ≥ 11, we get

gl = P[Y +
1 = sl]

= P[Y +
1 = k + s(l − 10)]

= P[k + s(l − 11) < Y1 ≤ k + s(l − 10)]
= P[Y1 ≤ k + s(l − 10)]− P[Y1 ≤ k + s(l − 11)]
= P[Z ≤ s(l − 10)]− P[Z ≤ s(l − 11)]
= P [logZ ≤ log(s[l − 10])]− P [logZ ≤ log(s[l − 11])]

= Φ
(

log[s(l − 10)]− µ
σ

)
− Φ

(
log[s(l − 11)]− µ

σ

)
,

where Φ is the distribution function of the standard Gaussian distribution and where we define
log 0 = −∞. From now on we will replace the claim sizes Yi with the discretized claim sizes Y +

i . In
particular, we will still write S for the yearly claim amount that changed to

S =
N∑
i=1

Y +
i .

Note that N ∼ Poi(1) has a Panjer distribution with parameters a = 0 and b = 1, see the proof of
Lemma 4.7 of the lecture notes. Applying the Panjer algorithm given in Theorem 4.9 of the lecture
notes, we have for r ∈ N0

fr
def.= P[S = sr] =

{
P[N = 0] for r = 0,∑r
l=1

l
rglfr−l for r > 0.

Since the yearly amount that the client has to pay by himself is given by

Sins = min{S, d}+ min{α · (S − d)+,M} = min{S, d}+ α ·min
{

(S − d)+,
M

α

}
,

M/α = 7’000 and the maximal possible franchise is 2’500, we have to apply the Panjer algorithm
until we reach P[S = 9’500] = f950. Here we limit ourselves to determine the values of f0, . . . , f12
to illustrate how the algorithm works. In particular, we have

f0 = P[N = 0] = e−1 ≈ 0.36
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and
f1 = f2 = · · · = f10 = 0,

since g1 = g2 = · · · = g10 = 0. For r = 11 and r = 12, we get

f11 =
11∑
l=1

l

11glf11−l = g11f0 =
[
Φ
(

log s− µ
σ

)
− Φ

(
log 0− µ

σ

)]
e−1 ≈ 7.089 · 10−9

and

f12 =
12∑
l=1

l

12glf12−l = g12f0 =
[
Φ
(

log 2s− µ
σ

)
− Φ

(
log s− µ

σ

)]
e−1 ≈ 2.786 · 10−7.

Using the discretized claim sizes, the yearly expected amount πins paid by the client is given by

πins = E[Sins] = E [min{S, d}] + αE
[
min

{
(S − d)+,

M

α

}]
,

where we have

E [min{S, d}] =
d/s∑
r=0

frsr + d

1−
d/s∑
r=0

fr

 = d+
d/s∑
r=0

fr(sr − d)

and

E
[
min

{
(S − d)+,

M

α

}]
=
d/s+M/sα∑
r=d/s+1

fr(sr − d) + M

α

1−
d/s+M/α∑

r=0
fr


= M

α
+
d/s+M/sα∑
r=d/s+1

fr

(
sr − d− M

α

)
− M

α

d/s∑
r=0

fr.

Therefore, we get

πins = d+
d/s∑
r=0

fr(sr − d) + α

M
α

+
d/s+M/sα∑
r=d/s+1

fr

(
sr − d− M

α

)
− M

α

d/s∑
r=0

fr


= d+M +

d/s∑
r=0

fr(sr − d−M) +
d/s+M/sα∑
r=d/s+1

αfr

(
sr − d− M

α

)
.

Finally, if the client has chosen franchise d, then the monthly pure risk premium π is given by

π = π0 − πins

12

= 1
12

k + exp
{
µ+ σ2

2

}
− d−M −

d/s∑
r=0

fr(sr − d−M)−
d/s+M/sα∑
r=d/s+1

αfr

(
sr − d− M

α

) .
In the end, we get the following monthly pure risk premiums for the different franchises:

d 300 500 1’000 1’500 2’000 2’500
π 307 297 274 253 233 216

More generally, the monthly pure risk premium as a function of the franchise, which is allowed to
vary between 300 CHF and 2’500 CHF, looks as follows:

Updated: November 8, 2017 2 / 9



Non-Life Insurance: Mathematics and Statistics, D-MATH
HS 2017 Solution sheet 8

Note that the above values only represent the pure risk premiums. In order get the premiums that
the customer has to pay in the end, we would need to add an appropriate risk-loading, which may
vary between different health insurance companies. The above plot can be created by the R-code
given below, where we calculated the premiums using two different discretizations of the claim sizes:
in one we put the probability mass to the upper end of the intervals and in the other to the lower
end of the intervals. However, the resulting premiums for these two versions are basically the same.

1 ### Define the function KK_ premium with the variables :
2 ### lambda = mean number of claims
3 ### mu = mean parameter of log - normal distribution
4 ### sigma2 = variance parameter of log - normal distribution
5 ### span = span size used in the Panjer algorithm
6 ### shift = shift of the translated log - normal distribution
7 KK_ premium <- function (lambda , mu , sigma2 , span , shift){
8 ### we will calculate the distribution of S until M (M = 2500 +

7000)
9 M <- 9500

10
11 ### number of steps
12 m <- M/span
13
14 ### we won ’t have any mass until we reach shift , which happens at

the k0 -th step
15 k0 <- shift/span
16
17 ### initialize array where mass is put to the lower end of the

interval
18 g_min <- array (0, dim=c(m+1 ,1))
19
20 ### initialize array where mass is put to the upper end of the

interval
21 g_max <- array (0, dim=c(m+1 ,1))
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22
23 ### discretize the log - normal distribution putting the mass to

the lower end of the interval
24 for (k in (k0 +1) :(m+1)){g_min[k ,1] <- pnorm(log ((k-k0)*span),

mean=mu , sd=sqrt( sigma2 ))-pnorm(log ((k-k0 -1)*span), mean=mu ,
sd=sqrt( sigma2 ))}

25
26 ### discretize the log - normal distribution putting the mass to

the upper end of the interval
27 g_max [2:(m+1) ,1] <- g_min [1:m ,1]
28
29 ### initialize matrix , where we will store the probability

distribution of S
30 f1 <- matrix (0, nrow=m+1, ncol =3)
31
32 ### store the probability of getting zero claims (in both lower

bound and upper bound)
33 f1 [1 ,1] <- exp(- lambda *(1-g_min [1 ,1]))
34 f1 [1 ,2] <- exp(- lambda *(1-g_max [1 ,1]))
35
36 ### calculate the values "l * g_{l}" of the discretized claim

sizes (lower bound and upper bound), we need these values in
the Panjer algorithm

37 h1 <- matrix (0, nrow=m, ncol =3)
38 for (i in 1:m){
39 h1[i ,1] <- g_min[i+1 ,1]*(i+1)
40 h1[i ,2] <- g_max[i+1 ,1]*(i+1)
41 }
42
43 ### Panjer algorithm (note that in the Poisson case we have a = 0

and b = lambda *v, which is just lambda here)
44 for (r in 1:m){
45 f1[r+1 ,1] <- lambda /r*(t(f1 [1:r ,1])%*%h1[r:1 ,1])
46 f1[r+1 ,2] <- lambda /r*(t(f1 [1:r ,2])%*%h1[r:1 ,2])
47 f1[r+1 ,3] <- r * span
48 }
49
50 ### maximal and minimal franchise
51 m1 <- 2500
52 m0 <- 300
53
54 ### number of iterations needed to get to m1 and m0
55 i1 <- m1/span +1
56 i0 <- m0/span +1
57
58 ### calculate the part that the insured pays by himself
59 franchise <- array(NA , c(i1 , 3))
60 for (i in i0:i1){
61 franchise [i ,1] <- f1[i ,3] ### this represents the franchise
62 franchise [i ,2] <- sum(f1 [1:i ,1]*f1 [1:i ,3]) + f1[i ,3] * (1- sum(

f1 [1:i ,1]))
63 franchise [i ,2] <- franchise [i ,2] + sum(f1[(i+1) :(i+7000/span)
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,1]*f1 [2:(7000 /span +1) ,3])*0.1 + 700 * (1- sum(f1 [1:(i+7000/
span) ,1]))

64 franchise [i ,3] <- sum(f1 [1:i ,2]*f1 [1:i ,3]) + f1[i ,3] * (1- sum(
f1 [1:i ,2]))

65 franchise [i ,3] <- franchise [i ,3] + sum(f1[(i+1) :(i+7000/span)
,2]*f1 [2:(7000 /span +1) ,3])*0.1 + 700 * (1- sum(f1 [1:(i+7000/
span) ,2]))

66 }
67
68 ### calculate the price of the monthly premium
69 price <- array(NA , c(i1 , 3))
70 price [,1] <- franchise [,1] ### this represents the franchise
71 price [ ,2:3] <- ( lambda *(exp(mu+ sigma2 /2)+shift) - franchise

[ ,2:3])/12
72 price
73 }
74
75 ### Load the add -on packages stats and MASS
76 require (stats)
77 require (MASS)
78
79 ### Determine values for the input parameters of the function KK_

premium
80 lambda <- 1
81 mu <- 7.8
82 sigma2 <- 1
83 span <- 10
84 shift <- 100
85
86 ### The coefficient of variation of the translated log - normal

distribution is given by
87 exp(mu+ sigma2 /2)*sqrt(exp( sigma2 ) -1)/(shift+exp(mu+ sigma2 /2))
88
89 ### Run the function KK_ premium
90 price <- KK_ premium (lambda , mu , sigma2 , span , shift)
91
92 ### Plot the monthly pure risk premium as a function of the

franchise
93 plot(x=price [,1], y=price [,2], lwd =2, col="blue", type=’l’, ylab="

pure risk premium ", xlab=" franchise ", main="pure risk premium (
monthly )")

94 lines(x=price [,1], y=price [,2], lwd =1, col="blue")
95 points (x=c(300 ,500 , 1000 , 1500 , 2000 , 2500) , y=price[c(300 ,500 ,

1000 , 1500 , 2000 , 2500)/span +1,3], pch =19, col=" orange ")
96 abline (v=c(300 , 500, 1000 , 1500 , 2000 , 2500) , col=" darkgray ", lty

=3)
97
98 ### Give the monthly pure risk premiums for the six franchises

listed on the exercise sheet
99 round(price[c(300 ,500 , 1000 , 1500 , 2000 , 2500)/span +1 ,2])

100 round(price[c(300 ,500 , 1000 , 1500 , 2000 , 2500)/span +1 ,3])
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Solution 8.2 Variance Loading Principle

(a) Let S1, S2, S3 be the total claim amounts of the passenger cars, delivery vans and trucks,
respectively. Then, according Proposition 2.11 of the lecture notes, for the expected total
claim amounts we have

E[Si] = λivi E
[
Y

(i)
1

]
,

for all i ∈ {1, 2, 3}. Using the data given in the table on the exercise sheet, we get

E[S1] = 0.25 · 40 · 2’000 = 20’000,
E[S2] = 0.23 · 30 · 1’700 = 11’730 and
E[S3] = 0.19 · 10 · 4’000 = 7’600.

If we write S for the total claim amount of the car fleet, we can conclude that

E[S] = E[S1 + S2 + S3] = E[S1] + E[S2] + E[S3] = 39’330.

(b) Again using Proposition 2.11 of the lectures notes, we get

Var[Si] = λivi E
[(
Y

(i)
1

)2
]

= λivi

(
Var

(
Y

(i)
1

)
+ E

[
Y

(i)
1

]2
)

= λivi E
[
Y

(i)
1

]2 (
Vco(Y (i)

1 )2 + 1
)
,

for all i ∈ {1, 2, 3}. Using the data given in the table on the exercise sheet, we find

Var(S1) = 0.25 · 40 · 2’0002(2.52 + 1) = 290’000’000,
Var(S2) = 0.23 · 30 · 1’7002(22 + 1) = 99’705’000 and
Var(S3) = 0.19 · 10 · 4’0002(32 + 1) = 304’000’000.

Since S1, S2 and S3 are independent by assumption, we get for the variance of the total claim
amount S of the car fleet

Var(S) = Var(S1) + Var(S2) + Var(S3) = 693’705’000.

Using the variance loading principle with α = 3 · 10−6, we get for the premium π of the car
fleet

π = E[S] + αVar(S) = 39’330 + 3 · 10−6 · 693’705’000 ≈ 39’330 + 2’081 = 41’411.

Note that we have
π − E[S]
E[S] = αVar(S)

E[S] ≈ 2’081
39’330 ≈ 5.3%.

Thus, the loading π − E[S] is given by 5.3% of the pure risk premium.

Solution 8.3 Panjer Distribution

If we write
pk = P[N = k]

for all k ∈ N, then, by definition of the Panjer distribution, we have

pk = pk−1

(
a+ b

k

)
,

for all k in the range of N . We can use this recursion to calculate E[N ] and Var(N). Note that the
range of N is N if a ≥ 0 and it is {0, 1, . . . , n} for some n ∈ N≥1 if a < 0.
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First, we consider the case where a < 0, i.e. where the range of N is {0, 1, . . . , n}. According to the
proof of Lemma 4.7 of the lecture notes, we have

n = −a+ b

a
. (1)

For the expectation of N , we get

E[N ] =
n∑
k=0

k pk

=
n∑
k=1

k pk

=
n∑
k=1

k pk−1

(
a+ b

k

)

= a

n∑
k=1

k pk−1 + b

n∑
k=1

pk−1

= a

n−1∑
k=0

(k + 1) pk + b

n−1∑
k=0

pk

= a

n−1∑
k=0

k pk + (a+ b)
n−1∑
k=0

pk

= a (E[N ]− npn) + (a+ b)(1− pn)
= aE[N ] + a+ b+ pn(−an− a− b).

Using (1), we get
−an− a− b = a

a+ b

a
− a− b = 0. (2)

Hence, the above expression for E[N ] simplifies to

E[N ] = aE[N ] + a+ b,

from which we can conclude that
E[N ] = a+ b

1− a.
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In order to get the variance of N , we first calculate the second moment of N :

E[N2] =
n∑
k=0

k2 pk

=
n∑
k=1

k2 pk

=
n∑
k=1

k2 pk−1

(
a+ b

k

)

= a

n∑
k=1

k2 pk−1 + b

n∑
k=1

k pk−1

= a

n−1∑
k=0

(k + 1)2 pk + b

n−1∑
k=0

(k + 1) pk

= a

n−1∑
k=0

k2 pk + (2a+ b)
n−1∑
k=0

k pk + (a+ b)
n−1∑
k=0

pk

= a (E[N2]− n2pn) + (2a+ b)(E[N ]− npn) + (a+ b)(1− pn)
= aE[N2] + (2a+ b)E[N ] + a+ b+ pn[−an2 − (2a+ b)n− a− b].

Using (1), we get

−an2 − (2a+ b)n− a− b = −a
(
a+ b

a

)2
+ (2a+ b)a+ b

a
− a− b

= −a
2 + 2ab+ b2

a
+ 2a2 + 3ab+ b2

a
− a2 + ab

a
= 0.

(3)

Hence, the above expression for E[N2] simplifies to

E[N2] = aE[N2] + (2a+ b)E[N ] + a+ b,

from which we get

E[N2] = (2a+ b)E[N ] + a+ b

1− a

= (2a+ b) (a+ b) + (a+ b)(1− a)
(1− a)2

= 2a2 + 3ab+ b2 + a− a2 + b− ab
(1− a)2

= (a+ b)2 + a+ b

(1− a)2 .

Finally, the variance of N then is

Var(N) = E[N2]− E[N ]2 = (a+ b)2 + a+ b

(1− a)2 − (a+ b)2

(1− a)2 = a+ b

(1− a)2 .

In the case where a ≥ 0, i.e. where the range of N is N, we can perform analogous calculations
with the only difference that the index of summation in all the sums involved goes up to ∞ instead
of stopping at n. As a consequence, the calculations in (2) and in (3) aren’t necessary anymore.
The formulas for E[N ] and Var(N), however, remain the same.
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The ratio of Var(N) to E[N ] is given by

Var(N)
E[N ] = a+ b

(1− a)2
1− a
a+ b

= 1
1− a.

Note that if a < 0, i.e. if N has a binomial distribution, we have Var(N) < E[N ]. If a = 0, i.e. if
N has a a Poisson distribution, we have Var(N) = E[N ]. Finally, in the case of a > 0, i.e. for a
negative-binomial distribution, we have Var(N) > E[N ].
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