Algebraic Geometry II

Exercise Sheet 1

\mathcal{O}_X -Modules, Quasi-Coherent Sheaves

General Rule: We recommend that you do, or at least try to, solve all unmarked problems. Problems marked * are additional ones that may be harder or may lead into directions not immediately covered by the course. Problems marked ** are challenge problems; if you try them, discuss your results with Prof. Pink.

Fix a scheme (X, \mathcal{O}_X) .

- 1. Explain in all details why and how the tensor product of sheaves of \mathcal{O}_X -modules is functorial in both variables.
- 2. (Basic properties of the sheaf of homomorphisms) Consider \mathcal{O}_X -modules $\mathcal{F}, \mathcal{G}, \mathcal{H}$, and \mathcal{F}_i . In each of the following cases construct a natural isomomorphism, or a natural homomorphism and discuss under which additional conditions this is an isomorphism.
 - (a) Between $\mathscr{H}om_{\mathcal{O}_X}(\mathcal{F},\mathcal{G})_x$ and $\operatorname{Hom}_{\mathcal{O}_{X,x}}(\mathcal{F}_x,\mathcal{G}_x)$ for any $x \in X$.
 - (b) Between $\mathscr{H}om_{\mathcal{O}_X}(\mathcal{O}_X, \mathcal{F})$ and \mathcal{F} .
 - (c) Between $\mathscr{H}om_{\mathcal{O}_X}(\bigoplus_{i\in I}\mathcal{F}_i,\mathcal{G})$ and $\prod_{i\in I}\mathscr{H}om_{\mathcal{O}_X}(\mathcal{F}_i,\mathcal{G})$.
 - (d) Between $\mathscr{H}om_{\mathcal{O}_X}(\mathcal{G}, \prod_{i \in I} \mathcal{F}_i)$ and $\prod_{i \in I} \mathscr{H}om_{\mathcal{O}_X}(\mathcal{G}, \mathcal{F}_i)$.
 - (e) Between $\operatorname{Hom}_{\mathcal{O}_X}(\mathcal{F} \otimes_{\mathcal{O}_X} \mathcal{G}, \mathcal{H})$ and $\operatorname{Hom}_{\mathcal{O}_X}(\mathcal{F}, \mathscr{H}om_{\mathcal{O}_X}(\mathcal{G}, \mathcal{H})).$
 - (f) Between $\mathscr{H}om_{\mathcal{O}_X}(\mathcal{F} \otimes_{\mathcal{O}_X} \mathcal{G}, \mathcal{H})$ and $\mathscr{H}om_{\mathcal{O}_X}(\mathcal{F}, \mathscr{H}om_{\mathcal{O}_X}(\mathcal{G}, \mathcal{H})).$
- 3. (Exactness properties of Hom and Hom) Prove the following:
 - (a) A sequence $0 \to \mathcal{F}' \to \mathcal{F} \to \mathcal{F}''$ of \mathcal{O}_X -modules is exact if and only if for all open subsets $U \subset X$ and for all \mathcal{O}_U -modules \mathcal{G} the sequence

 $0 \to \operatorname{Hom}_{\mathcal{O}_U}(\mathcal{G}, \mathcal{F}'|_U) \to \operatorname{Hom}_{\mathcal{O}_U}(\mathcal{G}, \mathcal{F}|_U) \to \operatorname{Hom}_{\mathcal{O}_U}(\mathcal{G}, \mathcal{F}''|_U)$

of $\mathcal{O}_X(U)$ -modules is exact if and only if for all \mathcal{O}_X -modules \mathcal{G} the sequence

$$0 \to \mathscr{H}om_{\mathcal{O}_X}(\mathcal{G}, \mathcal{F}') \to \mathscr{H}om_{\mathcal{O}_X}(\mathcal{G}, \mathcal{F}) \to \mathscr{H}om_{\mathcal{O}_X}(\mathcal{G}, \mathcal{F}'')$$

of \mathcal{O}_X -modules is exact.

(b) A sequence $\mathcal{F}' \to \mathcal{F} \to \mathcal{F}'' \to 0$ of \mathcal{O}_X -modules is exact if and only if for all open subsets $U \subset X$ and for all \mathcal{O}_U -modules \mathcal{G} the sequence

 $0 \to \operatorname{Hom}_{\mathcal{O}_U}(\mathcal{F}''|_U, \mathcal{G}) \to \operatorname{Hom}_{\mathcal{O}_U}(\mathcal{F}|_U, \mathcal{G}) \to \operatorname{Hom}_{\mathcal{O}_U}(\mathcal{F}'|_U, \mathcal{G})$

of $\mathcal{O}_X(U)$ -modules is exact if and only if for all \mathcal{O}_X -modules \mathcal{G} the sequence

$$0 \to \mathscr{H}om_{\mathcal{O}_X}(\mathcal{F}'',\mathcal{G}) \to \mathscr{H}om_{\mathcal{O}_X}(\mathcal{F},\mathcal{G}) \to \mathscr{H}om_{\mathcal{O}}(\mathcal{F}',\mathcal{G})$$

of \mathcal{O}_X -modules is exact.

- 4. Let \mathcal{E} be a locally free \mathcal{O}_X -module of finite rank.
 - (a) Show that $(\mathcal{E}^{\vee})^{\vee} \cong \mathcal{E}$.
 - (b) For any \mathcal{O}_X -module \mathcal{F} , show that $\mathscr{H}om_{\mathcal{O}_X}(\mathcal{E}, \mathcal{F}) \cong \mathcal{E}^{\vee} \otimes \mathcal{F}$.
 - (c) Let *n* be the rank of \mathcal{E} and suppose that \mathcal{F} is locally free of finite rank *m*. Show that $\mathscr{H}om_{\mathcal{O}_X}(\mathcal{E}, \mathcal{F})$ is locally free of rank *nm*.
- 5. (a) If X = Spec A, show that for any A-modules M and N, where M is finitely **presented**, there is an isomorphism $\text{Hom}_A(M, N)^{\sim} \xrightarrow{\sim} \mathscr{H}om_{\mathcal{O}_X}(\tilde{M}, \tilde{N})$ of \mathcal{O}_X -modules which is functorial in M and N.
 - (b) Show that for any quasi-coherent \mathcal{O}_X -modules \mathcal{F} and \mathcal{G} , where \mathcal{F} is finitely presented, the \mathcal{O}_X -module $\mathscr{H}om_{\mathcal{O}_X}(\mathcal{F}, \mathcal{G})$ is again quasi-coherent.

**6. Give an example of a scheme X and a set I such that \mathcal{O}_X^I is not free.