Exercise Sheet 10

COHOMOLOGY, AMPLENESS CRITERION, HIGHER DIRECT IMAGE

1. Let X be a projective scheme over a noetherian ring A. Consider a finite exact sequence $\mathcal{F}^1 \to \mathcal{F}^2 \to \ldots \to \mathcal{F}^r$ of coherent sheaves on X. Show that there is an integer n_0 , such that for all $n \ge n_0$, the sequence of global sections

$$\mathcal{F}^1(n)(X) \to \mathcal{F}^2(n)(X) \to \ldots \to \mathcal{F}^r(n)(X)$$

is exact.

2. Consider separated quasicompact morphisms $X \xrightarrow{f} Y \xrightarrow{g} Z$ and a quasicoherent sheaf \mathcal{F} on X. Prove that there are natural isomorphisms

$$R^{p}(g \circ f)_{*}\mathcal{F} \cong \begin{cases} R^{p}g_{*}(f_{*}\mathcal{F}) & \text{if } f \text{ is affine,} \\ g_{*}(R^{p}f_{*}\mathcal{F}) & \text{if } g \text{ is affine.} \end{cases}$$

- 3. Let X and Y be proper schemes over a noetherian ring A. Consider an invertible sheaf \mathcal{L} on X. Prove:
 - (a) If \mathcal{L} is ample and $i: Y \hookrightarrow X$ is any closed embedding, then $i^*\mathcal{L}$ is ample.
 - (b) The sheaf \mathcal{L} is ample if and only if $i^*\mathcal{L}$ is ample for every reduced irreducible component $i: Y \hookrightarrow X$.
 - (c) For any finite surjective morphism $f: Y \to X$, the sheaf \mathcal{L} is ample if an only if $f^*\mathcal{L}$ is ample.
- 4. Let $X := \mathbb{P}_k^n$ for a field k.
 - (a) Show that for any integer $0 \leq q \leq n$ there is a short exact sequence

$$0 \to \Omega^q_{X/k} \to \mathcal{O}_X(-q)^{\binom{n+1}{q}} \to \Omega^{q-1}_{X/k} \to 0.$$

- (b) Compute $\dim_k H^p(X, \Omega^q_{X/k})$ for $X := \mathbb{P}^n_k$ and all p, q.
- 5. Let Y be the curve in \mathbb{P}^3_k over a field k that is defined by the equations $X_0^2 + X_2^2 = aX_1X_3$ and $X_1^2 + X_3^2 = aX_0X_2$ for a constant $a \in k$. Compute $H^*(Y, \mathcal{O}_Y)$, find out when Y is regular, and in that case compute $H^*(Y, \Omega_{Y/k})$.

*6. (a) Let (C^{\bullet}, d_C) and (D^{\bullet}, d_D) be complexes of A-modules, where A is a ring. We define a complex $(C \otimes D)^{\bullet}$ whose degree m part is given by

$$(C \otimes D)^m = \bigoplus_{p+q=m} C^p \otimes_A D^q$$

for every $m \in \mathbb{Z}$. The boundary maps d are given on each summand via $d(f \otimes g) := d_C f \otimes g + (-1)^{\deg f} f \otimes d_D g$, and we extend by linearity. We call $((C \otimes D)^{\bullet}, d)$ the *tensor product* of C^{\bullet} and D^{\bullet} . Show that if A is a field, we have a natural isomorphism

$$H^m((C \otimes D)^{\bullet}) \cong \bigoplus_{p+q=m} H^p(C^{\bullet}) \otimes_A H^q(D^{\bullet}).$$

(b) (*Künneth Formula.*) Let X and Y be quasi-compact separated schemes over a field k, and let \mathcal{F} and \mathcal{G} be quasicoherent sheaves on X and Y respectively. Show that for every $m \ge 0$, there is a natural isomorphism

$$H^m(X \times_k Y, \operatorname{pr}^*_X \mathcal{F} \otimes \operatorname{pr}^*_Y \mathcal{G}) \cong \bigoplus_{p+q=m} H^p(X, \mathcal{F}) \otimes_k H^q(Y, \mathcal{G}).$$