Exercise Sheet 10

Cohomology, Ampleness Criterion, Higher Direct Image

1. Let X be a projective scheme over a noetherian ring A. Consider a finite exact sequence $\mathcal{F}^{1} \rightarrow \mathcal{F}^{2} \rightarrow \ldots \rightarrow \mathcal{F}^{r}$ of coherent sheaves on X. Show that there is an integer n_{0}, such that for all $n \geqslant n_{0}$, the sequence of global sections

$$
\mathcal{F}^{1}(n)(X) \rightarrow \mathcal{F}^{2}(n)(X) \rightarrow \ldots \rightarrow \mathcal{F}^{r}(n)(X)
$$

is exact.
2. Consider separated quasicompact morphisms $X \xrightarrow{f} Y \xrightarrow{g} Z$ and a quasicoherent sheaf \mathcal{F} on X. Prove that there are natural isomorphisms

$$
R^{p}(g \circ f)_{*} \mathcal{F} \cong \begin{cases}R^{p} g_{*}\left(f_{*} \mathcal{F}\right) & \text { if } f \text { is affine } \\ g_{*}\left(R^{p} f_{*} \mathcal{F}\right) & \text { if } g \text { is affine }\end{cases}
$$

3. Let X and Y be proper schemes over a noetherian ring A. Consider an invertible sheaf \mathcal{L} on X. Prove:
(a) If \mathcal{L} is ample and $i: Y \hookrightarrow X$ is any closed embedding, then $i^{*} \mathcal{L}$ is ample.
(b) The sheaf \mathcal{L} is ample if and only if $i^{*} \mathcal{L}$ is ample for every reduced irreducible component $i: Y \hookrightarrow X$.
(c) For any finite surjective morphism $f: Y \rightarrow X$, the sheaf \mathcal{L} is ample if an only if $f^{*} \mathcal{L}$ is ample.
4. Let $X:=\mathbb{P}_{k}^{n}$ for a field k.
(a) Show that for any integer $0 \leqslant q \leqslant n$ there is a short exact sequence

$$
0 \rightarrow \Omega_{X / k}^{q} \rightarrow \mathcal{O}_{X}(-q)_{\binom{n+1}{q}} \rightarrow \Omega_{X / k}^{q-1} \rightarrow 0
$$

(b) Compute $\operatorname{dim}_{k} H^{p}\left(X, \Omega_{X / k}^{q}\right)$ for $X:=\mathbb{P}_{k}^{n}$ and all p, q.
5. Let Y be the curve in \mathbb{P}_{k}^{3} over a field k that is defined by the equations $X_{0}^{2}+X_{2}^{2}=$ $a X_{1} X_{3}$ and $X_{1}^{2}+X_{3}^{2}=a X_{0} X_{2}$ for a constant $a \in k$. Compute $H^{*}\left(Y, \mathcal{O}_{Y}\right)$, find out when Y is regular, and in that case compute $H^{*}\left(Y, \Omega_{Y / k}\right)$.
*6. (a) Let $\left(C^{\bullet}, d_{C}\right)$ and $\left(D^{\bullet}, d_{D}\right)$ be complexes of A-modules, where A is a ring. We define a complex $(C \otimes D)^{\bullet}$ whose degree m part is given by

$$
(C \otimes D)^{m}=\bigoplus_{p+q=m} C^{p} \otimes_{A} D^{q}
$$

for every $m \in \mathbb{Z}$. The boundary maps d are given on each summand via $d(f \otimes g):=d_{C} f \otimes g+(-1)^{\operatorname{deg} f} f \otimes d_{D} g$, and we extend by linearity. We call $\left((C \otimes D)^{\bullet}, d\right)$ the tensor product of C^{\bullet} and D^{\bullet}. Show that if A is a field, we have a natural isomorphism

$$
H^{m}\left((C \otimes D)^{\bullet}\right) \cong \bigoplus_{p+q=m} H^{p}\left(C^{\bullet}\right) \otimes_{A} H^{q}\left(D^{\bullet}\right)
$$

(b) (Künneth Formula.) Let X and Y be quasi-compact separated schemes over a field k, and let \mathcal{F} and \mathcal{G} be quasicoherent sheaves on X and Y respectively. Show that for every $m \geqslant 0$, there is a natural isomorphism

$$
H^{m}\left(X \times_{k} Y, \operatorname{pr}_{X}^{*} \mathcal{F} \otimes \operatorname{pr}_{Y}^{*} \mathcal{G}\right) \cong \bigoplus_{p+q=m} H^{p}(X, \mathcal{F}) \otimes_{k} H^{q}(Y, \mathcal{G})
$$

