Exercise Sheet 11

HIGHER DIRECT IMAGE, DUALITY, BASE CHANGE

- 1. Let $f: X \to Y$ be a projective morphism of noetherian schemes, let \mathcal{L} be a relatively ample invertible sheaf on X over Y, and let \mathcal{F} be a coherent sheaf on X. Show:
 - (a) For all $n \gg 0$, the natural map $f^*f_*(\mathcal{F} \otimes \mathcal{L}^{\otimes n}) \to \mathcal{F} \otimes \mathcal{L}^{\otimes n}$ is surjective.
 - (b) For p > 0 and $n \gg 0$, we have $R^p f_*(\mathcal{F} \otimes \mathcal{L}^{\otimes n}) = 0$.
- 2. Show the following:
 - (a) For any flat morphism $f: X \to Y$ the functor f^* from the category of \mathcal{O}_{Y^*} modules to the category of \mathcal{O}_X -modules is exact.
 - (b) For any morphism $f: X \to Y$ and any flat \mathcal{O}_Y -module \mathcal{G} the \mathcal{O}_X -module $f^*\mathcal{G}$ is flat.
 - (c) For any flat morphisms $f: X \to Y$ and $g: Y \to Z$ the composite $g \circ f$ is flat.
 - (d) For any flat morphism $f: X \to Y$ and any morphism $g: Y' \to Y$ the morphism $X \times_Y Y' \to Y'$ is flat.
- **3. Show that every smooth morphism is flat.
 - 4. Let $f: X \to Y$ be a projective morphism with *r*-dualizing sheaf ω_f . Show that for any flat morphism $Y' \to Y$, the dualizing sheaf of $X \times_Y Y' \to Y'$ is isomorphic to $\operatorname{pr}^*_X \omega_f$.
 - 5. (*Projection Formula*) (Compare Sheet 3, Exercise 2) Consider a morphism $f: X \to Y$, an \mathcal{O}_X -module \mathcal{F} and an \mathcal{O}_Y -module \mathcal{G} .
 - (a) Construct a natural base change homomorphism $(R^p f_* \mathcal{F}) \otimes \mathcal{G} \to R^p f_* (\mathcal{F} \otimes f^* \mathcal{G}).$
 - (b) If f is separated and quasi-compact and \mathcal{F} and \mathcal{G} are quasi-coherent and \mathcal{G} is flat, then this is an isomorphism.
 - 6. Let $Y = \operatorname{Spec} A$ and $X = \operatorname{Proj} A[X, Y] = \mathbb{P}^1_A$. Let \mathcal{F} be the kernel of the homomorphism $\varphi := (X^2, aXY, Y^2) : \mathcal{O}_X^{\oplus 3} \to \mathcal{O}_X(2)$ for some $a \in A$.
 - (a) Show that \mathcal{F} is locally free and the sequence $0 \to \mathcal{F} \to \mathcal{O}_X^{\oplus 3} \xrightarrow{\varphi} \mathcal{O}_X(2) \to 0$ is exact.
 - (b) For every integer p compute $H^p(X, \mathcal{F})$.
 - (c) For every point $y \in Y$ with fiber $i_y \colon X_y \hookrightarrow X$ and every integer p compute $H^p(X_y, i_y^*\mathcal{F})$ and compare it with $H^p(X, \mathcal{F}) \otimes_A k(y)$.