Exercise Sheet 12

Euler Characteristic, Riemann-Roch, Residues

1. (Riemann-Roch for locally free sheaves) Let X be a connected smooth projective curve of genus g over an algebraically closed field k.
(a) For every non-zero locally free sheaf \mathcal{F} there exists an invertible sheaf $\mathcal{L} \subset \mathcal{F}$ such that $\mathcal{F} / \mathcal{L}$ is locally free.
(b) For any locally free sheaf \mathcal{F} of rank r over X define $\operatorname{deg}(\mathcal{F}):=\operatorname{deg}\left(\bigwedge^{r} \mathcal{F}\right)$ and prove that

$$
\chi(X, \mathcal{F})=r \cdot(1-g)+\operatorname{deg}(\mathcal{F})
$$

2. For an arbitrary integral projective curve X over an algebraically closed field k, the arithmetic genus of X is defined as $p_{a}(Y):=h^{1}\left(X, \mathcal{O}_{X}\right)$. Let $\pi: \tilde{X} \rightarrow X$ be the normalization of X.
(a) Show that $p_{a}(X)=p_{a}(\tilde{X})+\sum_{P \in X}^{\prime} \operatorname{length}_{\mathcal{O}_{X, P}}\left(\pi_{*} \mathcal{O}_{\tilde{X}} / \mathcal{O}_{X}\right)_{P}$.
(b) Deduce that $p_{a}(X)=0$ if and only if X is nonsingular of genus 0 .
(c) Determine $p_{a}(X)$ for the nodal cubic curve $X:=V\left(C(C-B) A-B^{3}\right) \subset \mathbb{P}_{k}^{2}$ and the cuspidal cubic curve $X:=V\left(B^{2} C-A^{3}\right) \subset \mathbb{P}_{k}^{2}$.
3. (Hilbert polynomial of a coherent sheaf) Let X be a projective scheme over a field k with a very ample invertible sheaf \mathcal{L} and an arbitrary coherent sheaf \mathcal{F}. Prove:
(a) There is a unique polynomial $P_{\mathcal{F}} \in \mathbb{Q}[T]$ such that $\chi\left(X, \mathcal{F} \otimes \mathcal{L}^{\otimes m}\right)=P_{\mathcal{F}}(m)$ for all $m \in \mathbb{Z}$.
(b) This polynomial can be written uniquely as $P_{\mathcal{F}}(T)=\sum_{n}^{\prime} a_{n}\binom{T}{n}$ with $a_{n} \in \mathbb{Z}$.
*(c) If $\mathcal{F} \neq 0$, the degree of $P_{\mathcal{F}}$ is equal to the dimension of the support of \mathcal{F} and the highest coefficient of $P_{\mathcal{F}}$ is positive.
(d) If X is a smooth connected curve and k is algebraically closed, the highest coefficient of $P_{\mathcal{O}_{X}}$ is $\operatorname{deg}(\mathcal{L})$.
*(e) Repeat the same with an arbitrary invertible sheaf \mathcal{L}, assuming only in (c) that \mathcal{L} is ample.
4. Let k be a field. Show that for any $f \in k((t))^{\times}$and any $n \in \mathbb{Z}$ we have

$$
\operatorname{res}_{t}\left(f^{n} d f\right)=\left\{\begin{array}{cl}
\operatorname{ord}_{t}(f) & \text { if } n=-1 \\
0 & \text { otherwise }
\end{array}\right.
$$

5. Let k be an algebraically closed field of characteristic $\neq 2$. Let X be the connected smooth projective curve over k with the affine equation $y^{2}=f(x)$ for a separable polynomial $f(x) \in k[x]$ of degree 3. Denote the function field of X by K.
(a) Show that $\Gamma\left(X, \Omega_{X / k}\right)=k \cdot \frac{d x}{y}$.
(b) Verify the residue theorem for the rational differentials $d x, \frac{d x}{x}, \frac{x d x}{y} \in \Omega_{K / k}$ by explicitly computing all residues.
