Exercise Sheet 13

RIEMANN-ROCH, EMBEDDINGS IN PROJECTIVE SPACE

- 1. Let k be an arbitrary field with algebraic closure \bar{k} . Let X be a geometrically integral projective curve over k with $h^1(X, \mathcal{O}_X) = 0$. Show:
 - (a) The base change $X_{\overline{k}}$ is isomorphic to $\mathbb{P}^1_{\overline{k}}$.
 - (b) The curve X is isomorphic to a plane curve of degree 2.
 - (c) We have $X \cong \mathbb{P}^1_k$ if and only if $X(k) \neq \emptyset$.
- *2. Let X be an irreducible smooth projective curve of genus g = 1 over an algebraically closed field k. Show that there exists a locally free sheaf of rank 2 on X which is not a direct sum of invertible sheaves.

(For instance let i_P denote the embedding of a closed point P into X, let \mathcal{E} be the kernel of a homomorphism $\mathcal{O}_X(P) \oplus \mathcal{O}_X \to i_{P*}k$ which is non-zero on each direct summand, and show that the resulting short exact sequence

(*)
$$0 \longrightarrow \mathcal{O}_X \xrightarrow{\begin{pmatrix} 1 \\ 0 \end{pmatrix}} \mathcal{E} \xrightarrow{(0,1)} \mathcal{O}_X \longrightarrow 0$$

does not split.)

- 3. Let X be a smooth, irreducible curve of genus g over an algebraically closed field. Let D be an effective divisor on X. Show that:
 - (a) $h^0(X, \mathcal{O}_X(D)) \leq \deg D + 1.$
 - (b) $h^0(X, \mathcal{O}_X(D)) \leq \deg D$ if and only if $\deg(D) \geq 1$ and $g \geq 1$.
 - (c) $h^0(X, \mathcal{O}_X(D)) \leq \deg D 1$ if $\deg(D) \geq 2$ and X is not hyperelliptic.
- 4. Let X be a curve of genus 2. Show that a divisor D on X is very ample if and only if deg $D \ge 5$.
- 5. Let X be an irreducible smooth plane projective curve of degree 4 over an algebraically closed field k.
 - (a) Show that the given embedding $X \hookrightarrow \mathbb{P}^2_k$ is the canonical embedding of X.
 - (b) Deduce that X is not hyperelliptic.
 - (c) Show that the effective canonical divisors on X are precisely the divisors of the form $X \cap L$ for all lines L in \mathbb{P}^2_k .