Exercise Sheet 14

Hyperelliptic Curves, Coverings

- 1. Let k be a perfect field of characteristic p > 0.
 - (a) Let K be a finitely generated field extension of k of transcendence degree 1. Prove that for any $r \ge 1$ the only purely inseparable extension of degree p^r of K is the overfield $\{x^{1/p^r} \mid x \in K\}$.
 - (b) Deduce that for every purely inseparable finite morphism of curves $X \to Y$ over k we have g(X) = g(Y).
- 2. Let k be an algebraically closed field of characteristic 2 and let $g \ge 1$. Show that the smooth projective curve with the affine equation

$$y^2 + y = x^{2g+1}$$

is hyperelliptic of genus g. Hence there exist hyperelliptic curves of every genus ≥ 1 in characteristic 2.

- 3. Let $F \in k[x]$ be a separable polynomial of even degree ≥ 2 over an algebraically closed field k with char $k \neq 2$. Let X be the smooth projective curve over k with the affine equation $y^2 = F(x)$ and let $R := k[x, y]/(y^2 F(x))$. Show that the following properties are equivalent:
 - (a) There exist $A, B \in k[x]$ with $B \neq 0$ such that $A^2 FB^2 = 1$.
 - (b) $R^{\times} \neq k^{\times}$.
 - (c) Let $P_1, P_2 \in X$ be the two points at infinity where x has a pole. Then the divisor class $[P_1 P_2] \in Cl^0(X)$ is an element of finite order.

**Give examples where these properties hold and where they don't.

- 4. Let k be an algebraically closed field of characteristic $\neq 2$. An *elliptic curve* is an irreducible smooth projective curve of genus 1. Prove:
 - (a) Show that for any two distinct closed points P and Q on an elliptic curve E there exists an automorphism $\sigma: E \to E$ of order 2 with $\sigma(P) = Q$.
 - (b) For any $\lambda \in k \setminus \{0, 1\}$ the curve $E_{\lambda} \subset \mathbb{P}^2_k$ that is given by the equation

$$ZY^2 = X(X - Z)(X - \lambda Z)$$

is an elliptic cuve.

- (c) Show that any elliptic curve E is isomorphic to some such E_{λ} .
- (d) Show that $E_{\lambda} \cong E_{\mu}$ if and only if

$$\mu \in \left\{\lambda, \frac{1}{\lambda}, 1 - \lambda, \frac{1}{1 - \lambda}, \frac{\lambda}{\lambda - 1}, \frac{\lambda - 1}{\lambda}\right\}.$$

(e) The *j*-invariant of an elliptic curve E is the element

$$j(E) := 2^8 \cdot \frac{(\lambda^2 - \lambda + 1)^3}{\lambda^2 (\lambda - 1)^2} \in k$$

for any $\lambda \in k$ with $E_{\lambda} \cong E$. Show that $E \mapsto j(E)$ induces a bijection from the set of isomorphism classes of elliptic curves over k to k.

- 5. Show that the hyperelliptic curve over \mathbb{C} with the affine equation $y^2 = x^5 x$ has precisely 48 automorphisms.
- 6. Let k be an algebraically closed field of characteristic $p \ge 5$ and consider the hyperelliptic curve X of genus g given by

$$y^2 = x^p - x.$$

Show that $|\operatorname{Aut}(X)| \ge 2p(p^2 - 1) > 16g^3$.