Exercise Sheet 14

Hyperelliptic Curves, Coverings

1. Let k be a perfect field of characteristic $p>0$.
(a) Let K be a finitely generated field extension of k of transcendence degree 1 . Prove that for any $r \geqslant 1$ the only purely inseparable extension of degree p^{r} of K is the overfield $\left\{x^{1 / p^{r}} \mid x \in K\right\}$.
(b) Deduce that for every purely inseparable finite morphism of curves $X \rightarrow Y$ over k we have $g(X)=g(Y)$.

2 . Let k be an algebraically closed field of characteristic 2 and let $g \geqslant 1$. Show that the smooth projective curve with the affine equation

$$
y^{2}+y=x^{2 g+1}
$$

is hyperelliptic of genus g. Hence there exist hyperelliptic curves of every genus $\geqslant 1$ in characteristic 2 .
3. Let $F \in k[x]$ be a separable polynomial of even degree $\geqslant 2$ over an algebraically closed field k with char $k \neq 2$. Let X be the smooth projective curve over k with the affine equation $y^{2}=F(x)$ and let $R:=k[x, y] /\left(y^{2}-F(x)\right)$. Show that the following properties are equivalent:
(a) There exist $A, B \in k[x]$ with $B \neq 0$ such that $A^{2}-F B^{2}=1$.
(b) $R^{\times} \neq k^{\times}$.
(c) Let $P_{1}, P_{2} \in X$ be the two points at infinity where x has a pole. Then the divisor class $\left[P_{1}-P_{2}\right] \in \mathrm{Cl}^{0}(X)$ is an element of finite order.
${ }^{* *}$ Give examples where these properties hold and where they don't.
4. Let k be an algebraically closed field of characteristic $\neq 2$. An elliptic curve is an irreducible smooth projective curve of genus 1. Prove:
(a) Show that for any two distinct closed points P and Q on an elliptic curve E there exists an automorphism $\sigma: E \rightarrow E$ of order 2 with $\sigma(P)=Q$.
(b) For any $\lambda \in k \backslash\{0,1\}$ the curve $E_{\lambda} \subset \mathbb{P}_{k}^{2}$ that is given by the equation

$$
Z Y^{2}=X(X-Z)(X-\lambda Z)
$$

is an elliptic cuve.
(c) Show that any elliptic curve E is isomorphic to some such E_{λ}.
(d) Show that $E_{\lambda} \cong E_{\mu}$ if and only if

$$
\mu \in\left\{\lambda, \frac{1}{\lambda}, 1-\lambda, \frac{1}{1-\lambda}, \frac{\lambda}{\lambda-1}, \frac{\lambda-1}{\lambda}\right\} .
$$

(e) The j-invariant of an elliptic curve E is the element

$$
j(E):=2^{8} \cdot \frac{\left(\lambda^{2}-\lambda+1\right)^{3}}{\lambda^{2}(\lambda-1)^{2}} \in k
$$

for any $\lambda \in k$ with $E_{\lambda} \cong E$. Show that $E \mapsto j(E)$ induces a bijection from the set of isomorphism classes of elliptic curves over k to k.
5. Show that the hyperelliptic curve over \mathbb{C} with the affine equation $y^{2}=x^{5}-x$ has precisely 48 automorphisms.
6. Let k be an algebraically closed field of characteristic $p \geqslant 5$ and consider the hyperelliptic curve X of genus g given by

$$
y^{2}=x^{p}-x .
$$

Show that $|\operatorname{Aut}(X)| \geqslant 2 p\left(p^{2}-1\right)>16 g^{3}$.

