Exercise Sheet 2

Coherent and Quasi-Coherent Sheaves

Fix a locally noetherian scheme X.

- 1. Let $\mathcal{I} \subset \mathcal{O}_X$ be a quasi-coherent sheaf of ideals that is locally free as an \mathcal{O}_X -module. Show that \mathcal{I} is an invertible \mathcal{O}_X -module, unless ... what?
- *2. For any short exact sequence of \mathcal{O}_X -modules $0 \to \mathcal{F}' \to \mathcal{F} \to \mathcal{F}'' \to 0$, show that if two of $\mathcal{F}', \mathcal{F}, \mathcal{F}''$ are quasi-coherent, resp. coherent, so is the third.
- 3. Show that if \mathcal{F} and \mathcal{G} are coherent \mathcal{O}_X -modules, so is $\mathscr{H}om_{\mathcal{O}_X}(\mathcal{F},\mathcal{G})$.
- 4. Consider a morphism $f: X \to Y$. Is there a natural homomorphism between $(f_*\mathcal{E}) \otimes_{\mathcal{O}_Y} (f_*\mathcal{F})$ and $f_*(\mathcal{E} \otimes_{\mathcal{O}_X} \mathcal{F})$? When is it an isomorphism?
- 5. Let $f: X \to Y$ be a morphism of schemes, and let \mathcal{G} and \mathcal{G}' be two \mathcal{O}_Y -modules. Define a natural homomorphism of \mathcal{O}_X -modules

 $\alpha \colon f^*\mathscr{H}om_{\mathcal{O}_Y}(\mathcal{G}, \mathcal{G}') \to \mathscr{H}om_{\mathcal{O}_X}(f^*\mathcal{G}, f^*\mathcal{G}'),$

functorial in \mathcal{G} and \mathcal{G}' . Show that α is an isomorphism if \mathcal{G} is locally free of finite rank.

- 6. Prove that for any noetherian scheme X:
 - (a) Suppose X is affine. Prove that any quasi-coherent sheaf on X is a sum of coherent subsheaves.
 - (b) For general X, show that any coherent sheaf on an open subscheme of X is the restriction of a coherent sheaf on X.

**(c) Prove (a) for general X.

Hint: For (b), first prove the affine case. For the embedding $j : U \hookrightarrow X$ and a coherent sheaf \mathcal{F} on U look at the sheaf $j_*\mathcal{F}$.