Exercise Sheet 4

INVERTIBLE SHEAVES, MORPHISMS TO PROJECTIVE SPACE

- 1. Let $X = \operatorname{Proj} R$ for a graded ring R. Consider the graded ring $R' := \bigoplus_{d \ge 0} \mathcal{O}_X(d)(X)$. Is there a natural isomorphism $X \cong \operatorname{Proj} R'$?
- 2. Let $X = \operatorname{Proj} R$ for a graded ring R that is generated by finitely many elements of R_1 over a noetherian ring R_0 . Prove that a sheaf of \mathcal{O}_X -modules is coherent if and only if it is isomorphic to \tilde{M} for a finitely generated graded R-module M.
- 3. Let \mathcal{L} and \mathcal{L}' be invertible sheaves on a noetherian scheme X. Show:
 - (a) If \mathcal{L} is ample, there exists an $n_0 \in \mathbb{Z}$ such that $\mathcal{L}^{\otimes n} \otimes \mathcal{L}'$ is very ample for all $n \ge n_0$.
 - (b) If \mathcal{L} is ample and there exists an integer n' > 0 such that $\mathcal{L}'^{\otimes n'}$ is generated by its global sections, then $\mathcal{L} \otimes \mathcal{L}'$ is ample.
 - (c) If \mathcal{L} and \mathcal{L}' are ample, then $\mathcal{L} \otimes \mathcal{L}'$ is ample.
- 4. Let $f: X \to Y$ be a finite morphism of noetherian schemes. Let \mathcal{L} be an ample invertible sheaf on Y. Show that $f^*\mathcal{L}$ is ample.
- 5. Let X be the affine line over a field k with the origin doubled. Calculate $\operatorname{Pic} X$, determine which invertible sheaves are generated by global sections, and then show that there is no ample invertible sheaf on X.