Exercise Sheet 5

Projective Morphisms, Invertible Sheaves, Relative Proj

- 1. Prove that a morphism $f: X \to Y$ is projective if and only if it is quasiprojective and proper.
- 2. Let $f: X \to Y$ be a quasi-compact morphism. Let \mathcal{L} and \mathcal{L}' be invertible sheaves on X that are relatively ample over Y. Show that $\mathcal{L} \otimes \mathcal{L}'$ is relatively ample over Y.
- 3. Let $S = \bigoplus_{d \geqslant 0} S_d$ be a quasi-coherent sheaf of graded \mathcal{O}_X -algebras. Then for each open affine $U \subset X$, we have the graded $\mathcal{O}_X(U)$ -modules $S(U) = \bigoplus_{d \geqslant 0} S_d(U)$. Show that there exists a natural scheme $\pi \colon \operatorname{Proj} S \to X$ together with isomorphisms $\eta_U \colon \pi^{-1}(U) \xrightarrow{\sim} \operatorname{Proj} S(U)$ over U for all open affine subschemes $U \subset X$. Show that there is a natural invertible sheaf $\mathcal{O}(1)$ on $\operatorname{Proj} S$ whose restriction to each $\pi^{-1}(U)$ corresponds to the previously known sheaf $\mathcal{O}(1)$ on $\operatorname{Proj} S(U)$ via η_U . We call $\operatorname{Proj} S$ the relative Proj of S.

Show that for any projective morphism $f: Y \to X$ with relatively very ample invertible sheaf \mathcal{L} on Y there is a natural isomorphism $Y \cong \operatorname{Proj} \bigoplus_{d \geq 0} f_* \mathcal{L}^{\otimes d}$.

4. For any integer $n \ge 0$ consider the morphism

$$X := \mathbb{A}^{n+1} \setminus \{0\} \xrightarrow{\pi} Y := \mathbb{P}^n, \quad (x_0, \dots, x_n) \mapsto (x_0 : \dots : x_n).$$

Prove that π is affine and determine the sheaf of \mathcal{O}_X -algebras $\pi_*\mathcal{O}_X$.

- 5. (a) Prove that a scheme X is affine if and only if there exist sections $s_1, \ldots, s_n \in \mathcal{O}_X(X)$ generating the unit ideal such that for each i the open subset $D_{s_i} = X \setminus V(s_i)$ is affine.
 - (b) Prove that for any morphism $f: X \to Y$, the following are equivalent:
 - i. There exists an affine open covering $Y = \bigcup V_i$ such that each $f^{-1}(V_i)$ is affine.
 - ii. For every open affine $V \subset Y$ the inverse image $f^{-1}(V)$ is affine.

Please turn over

*6. (Vector bundles versus locally free sheaves)

A vector bundle of rank $n \in \mathbb{Z}^{\geqslant 0}$ over X is a scheme V over X together with morphisms $+: V \times_X V \to V$ and $\cdot: \mathbb{A}^1 \times V \to V$ and $0: X \to V$ over V, such that there exists an open covering $X = \bigcup_{\alpha} U_{\alpha}$ and isomorphisms $f^{-1}(U_{\alpha}) \cong \mathbb{A}^n \times U_{\alpha}$ over U_{α} , such that the morphisms $+,\cdot,0$ correspond to the morphisms

$$\mathbb{A}^{n} \times \mathbb{A}^{n} \times U_{\alpha} \to \mathbb{A}^{n} \times U_{\alpha}, \quad ((x_{1}, \dots, x_{n}), (y_{1}, \dots, y_{n}), u) \mapsto ((x_{1} + y_{1}, \dots, x_{n} + y_{n}), u)$$

$$\mathbb{A}^{1} \times \mathbb{A}^{n} \times U_{\alpha} \to \mathbb{A}^{n} \times U_{\alpha}, \qquad (\lambda, (x_{1}, \dots, x_{n}), u) \mapsto ((\lambda x_{1}, \dots, \lambda x_{n}), u)$$

$$U_{\alpha} \to \mathbb{A}^{n} \times U_{\alpha}, \qquad u \mapsto ((0, \dots, 0), u)$$

Homomorphisms of vector bundles are morphisms of schemes over X which make certain commutative diagrams with the morphisms $+,\cdot,0$ that one can guess. A vector bundle of rank 1 is called a *line bundle*.

- (a) Look up the definition of vector bundles on a differentiable manifold and compare.
- (b) Write down the commutative diagrams for morphisms of vector bundles.
- (c) Why do the above conditions not include analogues of the usual vector space axioms? What would these analogues say?
- (d) For any vector bundle V define the sheaf of sections \mathcal{V} as a sheaf of \mathcal{O}_{X} modules and extend this to a functor.
- (e) Prove that this induces an equivalence from the category of vector bundles of all ranks to the full subcategory of quasi-coherent sheaves on X that are locally free of some rank.
- (f) Discuss what is wrong with [Görtz and Wedhorn, Definition 11.5]. Construct a concrete example to show that (e) does not hold with that definition.
- (g) Promise to never confuse vector bundles with locally free sheaves, or line bundles with invertible sheaves, even if many other people do.