Algebraic Geometry II

Exercise Sheet 6

PICARD GROUP, DIVISORS, DIVISOR CLASSES

Let k be a field.

- 1. Prove that $\operatorname{Aut}_k(\mathbb{P}^n_k)$ is naturally isomorphic to $\operatorname{PGL}_{n+1}(k)$.
- 2. Consider a morphism $\varphi \colon \mathbb{P}_k^n \to \mathbb{P}_k^m$ over k which does not factor through a k-valued point of \mathbb{P}_k^m . Show that φ can be obtained as the composition of (1) the d-uple embedding $\mathbb{P}_k^n \to \mathbb{P}_k^N$ for a uniquely determined $d \ge 1$, (2) a linear projection $\mathbb{P}_k^N L \to \mathbb{P}_k^m$, where L is a linear subspace of \mathbb{P}_k^N , and (3) an automorphism of \mathbb{P}_k^m . Deduce that dim $\varphi(\mathbb{P}_k^n) = n \le m$ and that φ has finite fibers.
- 3. Consider the nodal cubic curve $X := V(C(C-B)A-B^3) \subset \mathbb{P}^2_k$. Prove that $\operatorname{Pic}(X) \cong k^{\times} \times \mathbb{Z}$. (Hint: Recall that X has the normalization $\pi \colon \mathbb{P}^1_k \twoheadrightarrow X$. To describe an invertible sheaf \mathcal{L} on X, describe $\pi^*\mathcal{L}$ and find out which additional information is necessary to determine \mathcal{L} .)
- *4. Determine the Picard group of the cuspidal cubic curve $V(Y^2Z X^3) \subset \mathbb{P}^2_k$.
- 5. (a) For any noetherian integral scheme X and any irreducible closed subscheme $Y \subset X$ of codimension 1, construct a natural exact sequence $\mathbb{Z} \to \operatorname{Cl}(X) \to \operatorname{Cl}(X \smallsetminus Y) \to 0$.
 - (b) Prove that $\operatorname{Cl}(\mathbb{P}^n_k \smallsetminus V(f)) \cong \mathbb{Z}/d\mathbb{Z}$ for any irreducible homogeneous polynomial f of degree d > 0.
- 6. For any locally factorial noetherian separated integral scheme X and any $n \ge 0$ prove that there are natural isomorphisms
 - (a) $\operatorname{Cl}(X \times \mathbb{A}^n) \cong \operatorname{Cl}(X)$ and
 - (b) $\operatorname{Cl}(X \times \mathbb{P}^n) \cong \operatorname{Cl}(X) \times \mathbb{Z}.$
- 7. Which of the following divisors is principal, resp. ample, resp. equivalent to an effective divisor?
 - (a) $D = V(X^3 + Y^3 + Z^3) V(X^2 + Y^2 + Z^2)$ on \mathbb{P}^2_k .
 - (b) D = -P for P := V(X 1, Y) on $X := \operatorname{Spec} \mathbb{R}[X, Y]/(X^2 + Y^2 1)$.
 - (c) $D = a \operatorname{diag} \mathbb{P}^1_k + b \operatorname{pr}^*_1 P + c \operatorname{pr}^*_2 P$ on $\mathbb{P}^1_k \times \mathbb{P}^1_k$ for $P \in \mathbb{P}^1(k)$ and $a, b, c \in \mathbb{Z}$.