Exercise Sheet 6

Picard Group, Divisors, Divisor Classes

Let k be a field.

1. Prove that $\operatorname{Aut}_{k}\left(\mathbb{P}_{k}^{n}\right)$ is naturally isomorphic to $\mathrm{PGL}_{n+1}(k)$.
2. Consider a morphism $\varphi: \mathbb{P}_{k}^{n} \rightarrow \mathbb{P}_{k}^{m}$ over k which does not factor through a k-valued point of \mathbb{P}_{k}^{m}. Show that φ can be obtained as the composition of (1) the d-uple embedding $\mathbb{P}_{k}^{n} \rightarrow \mathbb{P}_{k}^{N}$ for a uniquely determined $d \geqslant 1$, (2) a linear projection $\mathbb{P}_{k}^{N}-L \rightarrow \mathbb{P}_{k}^{m}$, where L is a linear subspace of \mathbb{P}_{k}^{N}, and (3) an automorphism of \mathbb{P}_{k}^{m}. Deduce that $\operatorname{dim} \varphi\left(\mathbb{P}_{k}^{n}\right)=n \leqslant m$ and that φ has finite fibers.
3. Consider the nodal cubic curve $X:=V\left(C(C-B) A-B^{3}\right) \subset \mathbb{P}_{k}^{2}$. Prove that $\operatorname{Pic}(X) \cong k^{\times} \times \mathbb{Z}$.
(Hint: Recall that X has the normalization $\pi: \mathbb{P}_{k}^{1} \rightarrow X$. To describe an invertible sheaf \mathcal{L} on X, describe $\pi^{*} \mathcal{L}$ and find out which additional information is necessary to determine \mathcal{L}.)
*4. Determine the Picard group of the cuspidal cubic curve $V\left(Y^{2} Z-X^{3}\right) \subset \mathbb{P}_{k}^{2}$.
4. (a) For any noetherian integral scheme X and any irreducible closed subscheme $Y \subset X$ of codimension 1, construct a natural exact sequence $\mathbb{Z} \rightarrow \mathrm{Cl}(X) \rightarrow$ $\mathrm{Cl}(X \backslash Y) \rightarrow 0$.
(b) Prove that $\mathrm{Cl}\left(\mathbb{P}_{k}^{n} \backslash V(f)\right) \cong \mathbb{Z} / d \mathbb{Z}$ for any irreducible homogeneous polynomial f of degree $d>0$.
5. For any locally factorial noetherian separated integral scheme X and any $n \geqslant 0$ prove that there are natural isomorphisms
(a) $\mathrm{Cl}\left(X \times \mathbb{A}^{n}\right) \cong \mathrm{Cl}(X)$ and
(b) $\mathrm{Cl}\left(X \times \mathbb{P}^{n}\right) \cong \mathrm{Cl}(X) \times \mathbb{Z}$.
6. Which of the following divisors is principal, resp. ample, resp very ample, resp. equivalent to an effective divisor?
(a) $D=V\left(X^{3}+Y^{3}+Z^{3}\right)-V\left(X^{2}+Y^{2}+Z^{2}\right)$ on \mathbb{P}_{k}^{2}.
(b) $D=-P$ for $P:=V(X-1, Y)$ on $X:=\operatorname{Spec} \mathbb{R}[X, Y] /\left(X^{2}+Y^{2}-1\right)$.
(c) $D=a \operatorname{diag} \mathbb{P}_{k}^{1}+b \operatorname{pr}_{1}^{*} P+c \operatorname{pr}_{2}^{*} P$ on $\mathbb{P}_{k}^{1} \times \mathbb{P}_{k}^{1}$ for $P \in \mathbb{P}^{1}(k)$ and $a, b, c \in \mathbb{Z}$.
