Exercise Sheet 7

Divisors, Divisor Classes, Differentials

1. Consider the nonsingular cubic curve $X:=V\left(Y^{2} Z-X^{3}-4 X Z^{2}\right) \subset \mathbb{P}_{\mathbb{C}}^{2}$ and its closed points $P_{0}:=(0: 1: 0)$ and $P:=(2: 4: 1)$ and $Q:=(0: 0: 1)$. Which of the following divisors on X is principal, resp. equivalent to an effective divisor?
(a) $D_{1}:=P-P_{0}$.
(b) $D_{2}:=P+Q-P_{0}$.
(c) $D_{3}:=2 P+Q-3 P_{0}$.
2. Let X be as in the previous exercise. Recall that its set of closed points $|X|$ possesses a natural abelian group structure with zero element P_{0}.
(a) Show that $P \in|X| \backslash\left\{P_{0}\right\}$ has order 2 in $|X|$ if and only if the tangent line at P passes through P_{0}.
(b) An inflection point of a plane curve is a nonsingular point P of the curve, whose tangent line has intersection multiplicity $\geqslant 3$ with the curve at P. Show that the inflection points in $|X|$ are precisely P_{0} and all points of order 3 .
${ }^{* *} 3$. Let $X=\operatorname{Spec} k[S, T, U] /\left(U T-S^{2}\right)$, and let C be the closed subscheme $V(S, T)$ of X.
(a) Show that $C \cong \mathbb{A}_{k}^{1}$ is a prime Weil divisor on X and that $\mathrm{Cl}(X)$ is a group of order 2 which is generated by the class of C.
(b) Show that $\operatorname{DivCl}(X)=0$ and deduce that cyc: $\operatorname{Div}(X) \rightarrow Z^{1}(X)$ is not surjective.
3. Consider ring homomorphisms $A \rightarrow B \rightarrow C$. Prove the following statements from the course:
(a) For any multiplicative system $S \subset B$, there is a natural isomorphism of $S^{-1} B$-modules $S^{-1} \Omega_{B / A} \cong \Omega_{S^{-1} B / A}$.
(b) There is a natural exact sequence

$$
C \otimes_{B} \Omega_{B / A} \rightarrow \Omega_{C / A} \rightarrow \Omega_{C / B} \rightarrow 0 .
$$

(c) If $C=B / J$ for an ideal $J \subset B$, there is a natural exact sequence

$$
J / J^{2} \rightarrow C \otimes_{B} \Omega_{B / A} \rightarrow \Omega_{C / A} \rightarrow 0
$$

5. Compute $\Omega_{B / A}$ in the following cases, and determine the largest open subscheme of $\operatorname{Spec} B$ over which $\Omega_{B / A}$ is locally free.
(a) $B=A[X, Y] /(X Y-t)$ for a discrete valuation ring A with uniformizer t.
(b) $B=k[X, Y, Z, W] /(X Y-Z W)$ where $A=k$ is a field.
(c) $B=k[X] /\left(X^{n}\right)$ for a field $A=k$ and an integer $n \geqslant 1$.
6. Let k be perfect of characteristic $p>0$. Let K be an extension of k. Show that $k \subset K^{p}$ and that the canonical homomorphism $\Omega_{K / k}^{1} \rightarrow \Omega_{K / K^{p}}^{1}$ is an isomorphism.
7. Construct an inseparable field extension L / K with $\Omega_{L / K}=0$.
