Algebraic Geometry II

Exercise Sheet 7

DIVISORS, DIVISOR CLASSES, DIFFERENTIALS

- 1. Consider the nonsingular cubic curve $X := V(Y^2Z X^3 4XZ^2) \subset \mathbb{P}^2_{\mathbb{C}}$ and its closed points $P_0 := (0:1:0)$ and P := (2:4:1) and Q := (0:0:1). Which of the following divisors on X is principal, resp. equivalent to an effective divisor?
 - (a) $D_1 := P P_0$.
 - (b) $D_2 := P + Q P_0.$
 - (c) $D_3 := 2P + Q 3P_0$.
- 2. Let X be as in the previous exercise. Recall that its set of closed points |X| possesses a natural abelian group structure with zero element P_0 .
 - (a) Show that $P \in |X| \setminus \{P_0\}$ has order 2 in |X| if and only if the tangent line at P passes through P_0 .
 - (b) An *inflection point* of a plane curve is a nonsingular point P of the curve, whose tangent line has intersection multiplicity ≥ 3 with the curve at P. Show that the inflection points in |X| are precisely P_0 and all points of order 3.
- **3. Let $X = \operatorname{Spec} k[S, T, U]/(UT S^2)$, and let C be the closed subscheme V(S, T) of X.
 - (a) Show that $C \cong \mathbb{A}^1_k$ is a prime Weil divisor on X and that $\operatorname{Cl}(X)$ is a group of order 2 which is generated by the class of C.
 - (b) Show that DivCl(X) = 0 and deduce that $\text{cyc}: \text{Div}(X) \to Z^1(X)$ is not surjective.
 - 4. Consider ring homomorphisms $A \to B \to C$. Prove the following statements from the course:
 - (a) For any multiplicative system $S \subset B$, there is a natural isomorphism of $S^{-1}B$ -modules $S^{-1}\Omega_{B/A} \cong \Omega_{S^{-1}B/A}$.
 - (b) There is a natural exact sequence

$$C \otimes_B \Omega_{B/A} \to \Omega_{C/A} \to \Omega_{C/B} \to 0.$$

(c) If C = B/J for an ideal $J \subset B$, there is a natural exact sequence

$$J/J^2 \to C \otimes_B \Omega_{B/A} \to \Omega_{C/A} \to 0.$$

- 5. Compute $\Omega_{B/A}$ in the following cases, and determine the largest open subscheme of Spec *B* over which $\Omega_{B/A}$ is locally free.
 - (a) B = A[X,Y]/(XY-t) for a discrete valuation ring A with uniformizer t.
 - (b) B = k[X, Y, Z, W]/(XY ZW) where A = k is a field.
 - (c) $B = k[X]/(X^n)$ for a field A = k and an integer $n \ge 1$.
- 6. Let k be perfect of characteristic p > 0. Let K be an extension of k. Show that $k \subset K^p$ and that the canonical homomorphism $\Omega^1_{K/k} \to \Omega^1_{K/K^p}$ is an isomorphism.
- 7. Construct an inseparable field extension L/K with $\Omega_{L/K} = 0$.