Exercise Sheet 9

Čech Cohomology

- 1. Show that the complex of abelian groups $\ldots \xrightarrow{2} \mathbb{Z}/4\mathbb{Z} \xrightarrow{2} \mathbb{Z}/4\mathbb{Z} \xrightarrow{2} \mathbb{Z}/4\mathbb{Z} \xrightarrow{2} \ldots$ is acyclic but not contractible.
- 2. Let X be a separated and quasicompact scheme and let $(\mathcal{F}_i)_{i \in I}$ be a filtered direct system of quasicoherent sheaves on X. Show that for any $p \ge 0$ there is a natural isomorphism

$$\varinjlim_{i} H^{p}(X, \mathcal{F}_{i}) \cong H^{p}(X, \varinjlim_{i} \mathcal{F}_{i}).$$

- 3. Let X be a scheme.
 - (a) Construct a natural isomorphism $\operatorname{Pic}(X) \cong H^1(X, \mathcal{O}_X^{\times}).$
 - *(b) Suppose that X is integral and let \mathcal{K}_X denote the constant sheaf with values in K(X). Show that the exact sequence

$$1 \to \mathcal{O}_X^{\times} \to \mathcal{K}_X^{\times} \to \mathcal{K}_X^{\times}/\mathcal{O}_X^{\times} \to 1$$

induces the isomorphism $\operatorname{DivCl}(X) \xrightarrow{\sim} \operatorname{Pic}(X)$ from §5.9 of the course.

- 4. Compute $H^*(X, \mathcal{O}_X)$ where $X = \mathbb{P}_k^2 \setminus \{(0:0:1)\}$ and for $X = \mathbb{A}_k^2 \setminus \{(0,0)\}$ for a field k. Conclude that X is not affine.
- *5. Find a sheaf of \mathcal{O}_X -modules \mathcal{F} on an affine scheme X for which $H^n(X, \mathcal{F}) \neq 0$ for some n > 0.