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Cohomology, Ampleness Criterion, Higher Direct Image

1. Let X be a projective scheme over a noetherian ring A. Consider a finite exact
sequence F1 → F2 → . . .→ F r of coherent sheaves on X. Show that there is an
integer n0, such that for all n > n0, the sequence of global sections

F1(n)(X)→ F2(n)(X)→ . . .→ F r(n)(X)

is exact.

Solution: For each i, let ϕi : F i → F i+1 denote the morphism in the exact
sequence from the statement of the problem. Then for each i ∈ {1, . . . , r− 1}, we
have a short exact sequences

0→ kerϕi+1 → F i+1 → cokerϕi → 0,

and the kerϕi+1 and cokerϕi are also coherent sheaves on X.

The sheaf OX(1) is very ample and hence ample. Fix i ∈ {1, . . . r − 1}. By the
cohomological criterion for ampleness, there exists an n0 ∈ Z such that for all
n > n0, we have H1(X, kerϕi+1(n)) = 0. Since there are only finitely many i,
we may choose an n0 that works for all of them. The long exact sequences on
cohomology thus yield short exact sequences

0→ kerϕi+1(n)(X)→ F i+1(n)(X)→ cokerϕi(n)(X)→ 0 (1)

for every i. These splice together to the sequence

F1(n)(X)→ F2(n)(X)→ . . .→ F r(n)(X)

from the statement of the exercise, which is exact since the sequences in (1) are.

2. Consider separated quasicompact morphisms X
f→ Y

g→ Z and a quasicoherent
sheaf F on X. Prove that there are natural isomorphisms

Rp(g ◦ f)∗F ∼=

{
Rpg∗(f∗F) if f is affine,

g∗(R
pf∗F) if g is affine.

Solution: We begin with the following lemma:
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Lemma. Let f : X → Y be an affine morphism with Y separated, and let F be a
quasi-coherent sheaf on X. Then for every p ∈ Z, the canonical homomorphism
Hp(X,F)→ Hp(Y, f∗F) is an isomorphism.

Proof. First note that X is separated over Y and hence itself separated, since
finite morphisms are separated. Let V = (Vi)i∈I be an affine cover of Y . Then
U :=

(
Ui := f−1(Vi)

)
i∈I is an affine cover of X such that C•(V , f∗F) = C•(U ,F).

We thus have
Hp(V , f∗F) = Hp(U ,F).

Since X and Y are separated, these are isomorphic to the Čech cohomology groups
and the desired result follows.

Let U ⊂ Z be an affine open subscheme, and let V := (g ◦ f)−1(U). Suppose f
is affine. A result from the course yields Rpg∗(f∗F)(U) = Hp(g−1(U), f∗F|g−1(U)).
By the lemma, the latter is isomorphic to Hp(V,F|V ). But we also have Rp(g ◦
f)∗F(U) = Hp(V,F|V ). Since both sheaves are quasicoherent, this determines an
isomorphism Rp(g ◦ f)∗F|U ∼= Rpg∗(f∗F)|U . We obtain a global isomorphism by
glueing over an affine open cover of Z.

Now suppose g is affine. Then g∗(R
pf∗F)(U) = Rpf∗F(g−1(U)). Since g−1(U) is

also affine, we have

Rpf∗F(g−1(U)) = Hp(V,F|V ) = Rp(g ◦ f)∗F(U).

This determines an isomorphism Rp(g◦f)∗F|U ∼= g∗(R
pf∗F)|U , and we again finish

by glueing.

3. Let X and Y be proper schemes over a noetherian ring A. Consider an invertible
sheaf L on X. Prove:

(a) If L is ample and i : Y ↪→ X is any closed embedding, then i∗L is ample.

(b) The sheaf L is ample if and only if i∗L is ample for every reduced irreducible
component i : Y ↪→ X.

(c) For any finite surjective morphism f : Y → X, the sheaf L is ample if an only
if f ∗L is ample.

Solution: (a) Since closed embeddings are finite, this is a corollary of Sheet 4,
Exercise 4.

(b) See [Liu, Corollary 5.3.8].

(c) See [Hartshorne, Ample Subvarieties of Algebraic Varieties, Proposition 1.4.4]
or [Stacks, Tag 0B5V].

4. Let X := Pn
k for a field k.
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(a) Show that for any integer 0 6 q 6 n there is a short exact sequence

0→ Ωq
X/k → OX(−q)(

n+1
q ) → Ωq−1

X/k → 0.

(b) Compute dimkH
p(X,Ωq

X/k) for X := Pn
k and all p, q.

Solution: (a) As preparation, we give the following lemma:

Lemma. Let 0→ F ′ → F → F ′′ → 0 be an exact sequence of locally free sheaves
on a scheme X where F ′′ has rank 1. Then there is an exact sequence

0→
q∧
F ′ →

q∧
F →

( q−1∧
F ′
)
⊗F ′′ → 0.

The proof of the lemma is analogous to that of the earlier statement about the
top exterior power from the course. Recall that we have an exact sequence

0→ ΩX/k → OX(−1)n+1 → OX → 0.

Applying the lemma to this yields the desired exact sequence.

(b) If q 6∈ [0, n] then Ωq
X/k = 0 and hence Hp(X,Ωq

X/k) = 0. For q = 0 we have

Ω0
X/k = OX and know already that H0(X,Ω0

X/k) = k and Hp(X,Ω0
X/k) = 0 for all

p 6= 0. For 1 6 q 6 n the long exact cohomology sequence associated to the short
exact sequence from (a) is

. . . . . . . . . // Hp−1(X,OX(−q))(
n+1
q ) // Hp−1(X,Ωq−1

X/k) //

// Hp(X,Ωq
X/k) // Hp(X,OX(−q))(

n+1
q ) // . . . . . . . . .

where we have also used that cohomology commutes with direct sums. Since
1 6 q 6 n, from the course we know that Hp(X,OX(−q)) = 0 for all p ∈ Z. It
follows from the above long exact sequence that Hp−1(X,Ωq−1

X/k) ∼= Hp(X,Ωq
X/k).

By induction on q, we thus obtain

dimkH
p(X,Ωq

X/k) ∼=

{
1 if 0 6 p = q 6 n,

0 otherwise.

5. Let Y be the curve in P3
k over an algebraically closed field k that is defined by the

equations X2
0 +X2

2 = aX1X3 and X2
1 +X2

3 = aX0X2 for a constant a ∈ k. Compute
H∗(Y,OY ), find out when Y is regular, and in that case compute H∗(Y,ΩY/k).

Solution: Since Y is one-dimensional and projective, all cohomology groups ex-
cept perhaps H0 and H1 are zero. Let X := P3

k = ProjR for R := k[X0, . . . , X3].
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(a) Regardless of the value of a ∈ k, the polynomials f := X2
0 +X2

2 − aX1X3 and
g := X2

1 + X2
3 − aX0X2 are relatively prime. Thus we have an exact sequence of

graded R-modules

0 // R(−4)
( g
−f) // R(−2)⊕2

(f,g) // I := (f, g) // 0.

This induces an exact sequence of OX-modules

0 // OX(−4)
( g
−f) // OX(−2)⊕2

(f,g) // I // 0.

Since Hp(X,OX(−2)) = 0 for all integers p, the associated long exact cohomology
sequence yields an isomorphism Hp(X, I)

∼→ Hp+1(X,OX(−4)) for every p. The
latter is ∼= k if p+ 1 = 3 and 0 otherwise. We also have an exact sequence

0 // I // OX
// i∗OY

// 0

where i : Y ↪→ X is the given closed embedding. Since Hp(X,OX) = 0 for all
p > 0, the associated long exact cohomology sequence yields isomorphisms

k = H0(X,OX)
∼→ H0(X, i∗OY ) ∼= H0(Y,OY )

and
H1(Y,OY ) ∼= H1(X, i∗OY )

∼→ H2(X, I)
∼→ H3(X,OX(−4)) ∼= k.

Thus Hp(Y,OY ) ∼= k for p = 0, 1 and = 0 otherwise.

(b) Since Y has codimension 2 and is given by two equations, we know that Y is
regular if and only if the Jacobian has rank 2 everywhere on Y . By the symmetry
of the defining equations, it is enough to determine when Y ∩ DX0 is regular.
Writing xi := Xi/X0 for i = 1, 2, 3, the Jacobian matrix of (f/X2

0 , g/X
2
0 )T is(

−ax3 2x2 −ax1
2x1 −a 2x3

)
.

Thus the singular locus of Y ∩DX0 is the joint zero set in A3
k of f/X2

0 and g/X2
0

and the three 2× 2-minors of the Jacobian matrix, in other words

V
(
1 + x22 − ax1x3, x21 + x23 − ax2, a2x3 − 4x1x2, 4x2x3 − a2x1, 2a(x21 − x23)

)
.

If a = 0, this contains the singular point (x1, x2, x3) = (0,±i, 0).

If a 6= 0 and 2 = 0, the third and fourth polynomial imply that x3 = x1 = 0,
which by the second polynomial implies that x2 = 0, which yields a contradiction
by the first polynomial.

If 2a 6= 0, the last polynomial implies that x3 = ±x1; then the second polynomial
implies that x2 = 2x21/a. If x1 = 0, this leads to a contradiction as in the previous
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case. Otherwise the third or fourth polynomial yields x2 = a2x3/4x1 = ±a2/4
and hence x1x3 = ±x21 = ±ax2/2 = a3/8. Plugging everything into the first
polynomial we obtain the equation 1 + a4

16
− a4

8
= 0, which is equivalent to a4 = 16.

Conversely if a4 = 16, one checks that x1 = x3 =
√

2/a and x2 = a2/4 defines a
singular point.

Together all this shows that the curve is non-singular if and only if a 6∈ {0} ∪ 2µ4,
where µ4 denotes the set of fourth roots of unity.

(c) Again since f and g are relatively prime, we have an isomorphism of graded
R-modules

(f, g) : (R/I)(−2)⊕2
∼−→ I/I2.

This induces an isomorphism i∗OX(−2)⊕2 ∼= i∗(I/I2). The second exact sequence
for differentials thus reads

0 // i∗OX(−2)⊕2 // i∗ΩX/k
// ΩY/k

// 0.

These sheaves are locally free of respective ranks 2, 3, 1. Taking highest exterior
powers we obtain an isomorphism

i∗OX(−4) ∼=
∧3 i∗ΩX/k

∼= ΩY/k ⊗
∧2 i∗

(
OX(−2)⊕2

) ∼= ΩY/k ⊗ i∗OX(−4).

Canceling the factor i∗OX(−4) shows that ΩY/k
∼= OY . The formula forHp(Y,ΩY/k)

is thus the same as that in (a).

(Remark: In a similar way we determined the canonical sheaf of any smooth hy-
persurface in Pn

k in §5.10 of the course. The method generalizes to any smooth
global complete intersection, i.e., any smooth closed subvariety Y ⊂ Pn

k of codi-
mension r that is given globally by r equations of degrees d1, . . . , dr. The result is
that ωY/k

∼= i∗O(d1 + . . .+ dr − n− 1).)

*6. (a) Let (C, dC) and (D, dD) be complexes of A-modules, where A is a ring. We
define a complex C ⊗D whose degree m part is given by

(C ⊗D)m =
⊕

p+q=m

Cp ⊗A D
q

for every m ∈ Z. The boundary maps d are given on each summand via
d(f ⊗ g) := dCf ⊗ g + (−1)deg ff ⊗ dDg, and we extend by linearity. We call(
C ⊗D, d

)
the tensor product of C and D. Show that if A is a field, we have

a natural isomorphism

Hm
(
C ⊗D) ∼=

⊕
p+q=m

Hp(C)⊗A H
q(D).
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(b) (Künneth Formula.) Let X and Y be quasi-compact separated schemes over
a field k, and let F and G be quasicoherent sheaves on X and Y respectively.
Show that for every m > 0, there is a natural isomorphism

Hm(X ×k Y, pr∗XF ⊗ pr∗Y G) ∼=
⊕

p+q=m

Hp(X,F)⊗k H
q(Y,G).

Solution: (a) Suppose A is a field. We regard the graded modules Z(C) and
B(C) as chain complexes with zero differential. The exact sequences

0 // Zp(C) // Cp dC // Bp+1(C) // 0

yield a long exact sequence of complexes

0 // Z(C) // C
dC // B(C) // 0.

Since we are over a field, tensoring (of complexes) preserves exactness, and we
obtain an exact sequence

0 // Z(C)⊗D // C ⊗D // B(C)⊗D // 0. (2)

Using that the boundary maps in Z(C) and B(C) are zero, a simple computation
shows that for every m ∈ Z, we have

Hm
(
Z(C)⊗D

)
=
⊕

p+q=m

Zp(C)⊗Hq(D) =:
(
Z(C)⊗H∗(D)

)m
and

Hm
(
B(C)⊗D

)
=
⊕

p+q=m

Bp+1(C)⊗Hq(D) =:
(
B(C)⊗H∗(D)

)m
.

Furthermore, one sees by inspection of the definitions that the connecting homo-
morphism of the long exact sequence of cohomology associated to (2) is just the
inclusion

(
B(C)⊗H∗(D)

)∗
↪→
(
Z(D)⊗H∗(D)

)∗
. This means that the long exact

sequence breaks up into short exact sequences

0 //
(
B(C)⊗H∗(D)

)m−1 //
(
Z(C)⊗H∗(D)

)m // Hm(C ⊗D) // 0.

Since tensoring with H∗(D) is exact, the cokernel of
(
B(C) ⊗ H∗(D)

)m−1
↪→(

Z(D) ⊗H∗(D)
)m

is precisely
⊕

p+q=mH
p(C) ⊗A H

q(D), and the desired result
follows.

(b) Let U = (Ui)i∈I and V = (Vj)j∈J be affine open coverings of X and Y respec-
tively. Then U ×V := (Ui×k Vj)(i,j)∈I×J is an affine open covering of X ×k Y . For
the Čech complexes we have

C∗(U × V , pr∗XF ⊗ pr∗Y G) = C∗(U ,F)⊗ C∗(V ,G).

The desired result then follows directly from part (a) and the fact that Čech
cohomology can be computed with affine open coverings in this situation.
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