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COHOMOLOGY, AMPLENESS CRITERION, HIGHER DIRECT IMAGE

1. Let X be a projective scheme over a noetherian ring A. Consider a finite exact
sequence F!' — F? — ... — F" of coherent sheaves on X. Show that there is an
integer ng, such that for all n > ng, the sequence of global sections

Fln)(X) = F2(n)(X) — ... = F'(n)(X)

18 exact.

Solution: For each i, let ¢;: F© — F*! denote the morphism in the exact
sequence from the statement of the problem. Then for each i € {1,...,r — 1}, we
have a short exact sequences

0 — ker ;14 — F1 — coker ¢; — 0,

and the ker ¢; 1 and coker ; are also coherent sheaves on X.

The sheaf Ox (1) is very ample and hence ample. Fix i € {1,...r — 1}. By the
cohomological criterion for ampleness, there exists an ny € Z such that for all
n > ng, we have H'(X, ker¢;;1(n)) = 0. Since there are only finitely many i,
we may choose an ng that works for all of them. The long exact sequences on
cohomology thus yield short exact sequences

0 — ker @;y1(n)(X) — F(n)(X) — coker p;(n)(X) — 0 (1)
for every 7. These splice together to the sequence
Fln)(X) = F2(n)(X) — ... = F'(n)(X)
from the statement of the exercise, which is exact since the sequences in (1) are.

2. Consider separated quasicompact morphisms X Ly % 7 and a quasicoherent
sheaf F on X. Prove that there are natural isomorphisms

RPg.(f.F) if f is affine,

R F
(9o /)-F { g«(RP . F) if g is affine.

Solution: We begin with the following lemma:



Lemma. Let f: X — Y be an affine morphism with Y separated, and let F be a
quasi-coherent sheaf on X. Then for every p € Z, the canonical homomorphism
HP(X,F) — HP(Y, f.F) is an isomorphism.

Proof. First note that X is separated over Y and hence itself separated, since
finite morphisms are separated. Let V = (V;);c; be an affine cover of Y. Then
U:=(U; = f‘l(Vi))ieI is an affine cover of X such that C*(V, f.F) = C*(U, F).
We thus have

HP(V, f.F)=H"(U,F).

Since X and Y are separated, these are isomorphic to the Cech cohomology groups
and the desired result follows. O

Let U C Z be an affine open subscheme, and let V := (g o f)~'(U). Suppose f
is affine. A result from the course yields RPg.(f..F)(U) = H? (g~ (U), fFlg-1(v))-
By the lemma, the latter is isomorphic to H?(V, F|y). But we also have RP(g o
f)«F(U) = HP(V,F|y). Since both sheaves are quasicoherent, this determines an

isomorphism RP(g o f).F|y = RPg.(f.F)|u. We obtain a global isomorphism by
glueing over an affine open cover of Z.

Now suppose ¢ is affine. Then g,(RPf.F)(U) = RFf.F (g *(U)). Since g~ *(U) is
also affine, we have

Rf.F(g~ (U)) = H(V. Flv) = RF(g o ). F(U).

This determines an isomorphism RP(go f).F|u = g«(RP f.F)|u, and we again finish
by glueing.

3. Let X and Y be proper schemes over a noetherian ring A. Consider an invertible
sheaf £ on X. Prove:
(a) If £ is ample and i: Y < X is any closed embedding, then i*£ is ample.

(b) The sheaf £ is ample if and only if i*L is ample for every reduced irreducible
component i: Y — X.

(c) For any finite surjective morphism f: Y — X the sheaf £ is ample if an only
if f*L is ample.
Solution: (a) Since closed embeddings are finite, this is a corollary of Sheet 4,
Exercise 4.
(b) See [Liu, Corollary 5.3.8].
(c) See [Hartshorne, Ample Subvarieties of Algebraic Varieties, Proposition 1.4.4]
or [Stacks, Tag 0B5V].

4. Let X := P} for a field k.



(a) Show that for any integer 0 < ¢ < n there is a short exact sequence

n+1

0— Q%) — OX(—q)( RN Qg(_/i — 0.

(b) Compute dimy H?(X, Qg(/k) for X := P} and all p, q.

Solution: (a) As preparation, we give the following lemma:

Lemma. Let 0 = F' — F = F" — 0 be an exact sequence of locally free sheaves
on a scheme X where F" has rank 1. Then there is an exact sequence

1
0—>/q\]-"—>/q\]-"—> (q/\f’>®f”—>().

The proof of the lemma is analogous to that of the earlier statement about the
top exterior power from the course. Recall that we have an exact sequence

0= Qx/p = Ox(—1)"" = Ox — 0.

Applying the lemma to this yields the desired exact sequence.

(b) If ¢ ¢ [0,n] then QF, = 0 and hence H?(X, Q%) = 0. For ¢ = 0 we have
0% x = Ox and know already that H°(X, Q% ) =k and HP(X, QY ;) = 0 for all
p # 0. For 1 < ¢ < n the long exact cohomology sequence associated to the short
exact sequence from (a) is

n+1

— HP(X, 9 ,) —= HY(X, Ox (—¢)) 0] ——
where we have also used that cohomology commutes with direct sums. Since
1 < ¢ < n, from the course we know that H?(X,Ox(—q)) = 0 for all p € Z. It
follows from the above long exact sequence that HP~!(X, Qgg/i) = HP(X, Q% 1)
By induction on ¢, we thus obtain

L if0<p=qg<mn,

di HP X, 04 =~
imy H?( X/k) { 0 otherwise.

. Let Y be the curve in P} over an algebraically closed field & that is defined by the
equations X2+ X2 = aX; X3 and X7+ X2 = a XX, for a constant a € k. Compute
H*(Y,Oy), find out when Y is regular, and in that case compute H*(Y, Qy /).

Solution: Since Y is one-dimensional and projective, all cohomology groups ex-
cept perhaps HY and H' are zero. Let X := P} = Proj R for R := k[Xy,..., X3].



(a) Regardless of the value of a € k, the polynomials f := X2 + X2 — aX; X3 and
g = X? + X7 — aXyX, are relatively prime. Thus we have an exact sequence of
graded R-modules

0— R(—4) (;qf)m(_z)@? U9 1= (f, g)—0.

This induces an exact sequence of Ox-modules

0——= Ox(—4) &) Ox(—2)82 YL g

Since H?(X, Ox(—2)) = 0 for all integers p, the associated long exact cohomology
sequence yields an isomorphism HP(X,Z) = HP* (X, Ox(—4)) for every p. The
latter is = k if p+ 1 = 3 and 0 otherwise. We also have an exact sequence

0 z Ox 1.0y —=0

where i: Y < X is the given closed embedding. Since H?(X,Ox) = 0 for all
p > 0, the associated long exact cohomology sequence yields isomorphisms

k=H'(X,0x) > H(X,i,0y) = H(Y, Oy)
and
HYY,0y) =2 H'(X,i,0y) = H*(X,T) & H*(X,0x(—4)) 2 k.
Thus HP(Y,Oy) = k for p = 0,1 and = 0 otherwise.

(b) Since Y has codimension 2 and is given by two equations, we know that Y is
regular if and only if the Jacobian has rank 2 everywhere on Y. By the symmetry
of the defining equations, it is enough to determine when Y N Dy, is regular.
Writing z; := X;/ Xy for i = 1,2, 3, the Jacobian matrix of (f/X3,g/X2)T is

—ars 2Ty —axy
207 —a 2x3 )

Thus the singular locus of Y N Dy, is the joint zero set in A? of f/X2 and g/ X2
and the three 2 x 2-minors of the Jacobian matrix, in other words

V(14 23 — azyxs, 2] + 23 — avs, a’z3 — 42122, daaxs — a’xq, 2a(z] — x3)).

If @ = 0, this contains the singular point (z1, x2, z3) = (0, £1,0).

If a # 0 and 2 = 0, the third and fourth polynomial imply that x3 = x; = 0,
which by the second polynomial implies that x5 = 0, which yields a contradiction
by the first polynomial.

If 2a # 0, the last polynomial implies that x3 = £x1; then the second polynomial
implies that zy = 222 /a. If x; = 0, this leads to a contradiction as in the previous
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*6.

case. Otherwise the third or fourth polynomial yields zo = a’z3/4z; = +a?/4
and hence z;13 = +a? = +az,/2 = a®/8. Plugging everything into the first
(14 a

polynomial we obtain the equation 1+ {5z — % = 0, which is equivalent to a* = 16.

Conversely if a* = 16, one checks that z; = 23 = \/2/a and 25 = a?/4 defines a
singular point.
Together all this shows that the curve is non-singular if and only if @ & {0} U2y,

where 4 denotes the set of fourth roots of unity.

(c) Again since f and g are relatively prime, we have an isomorphism of graded
R-modules
(f,9): (R/D)(=2)** — I/,

This induces an isomorphism i*Ox (—2)%? = §*(Z/Z?). The second exact sequence
for differentials thus reads

OﬁZ*OX(—2)@2ﬁZ*Qx/k Qy/k 0

These sheaves are locally free of respective ranks 2, 3,1. Taking highest exterior
powers we obtain an isomorphism

FOx(=4) = N Qxn =2 Qv @ N2 (0x(=2)%2) 2 Qy), @ *Ox(—4).

Canceling the factor i*Ox (—4) shows that Qy/, = Oy. The formula for H?(Y, Qy )
is thus the same as that in (a).

(Remark: In a similar way we determined the canonical sheaf of any smooth hy-
persurface in P} in §5.10 of the course. The method generalizes to any smooth
global complete intersection, i.e., any smooth closed subvariety Y C P} of codi-
mension 7 that is given globally by r equations of degrees dy, ..., d,. The result is
that wy, = 7*0(d +...+d, —n—1).)

(a) Let (C,d¢) and (D,dp) be complexes of A-modules, where A is a ring. We
define a complex C' ® D whose degree m part is given by

(CeD)"= @ C"®4 D

prq=m

for every m € Z. The boundary maps d are given on each summand via
d(f ®g) =dcf @g+ (—1)%/ f @ dpg, and we extend by linearity. We call
(C ® D, d) the tensor product of C' and D. Show that if A is a field, we have
a natural isomorphism

H™(C® D)= @ H'(C)@aH(D).

ptg=m



(b) (Kinneth Formula.) Let X and Y be quasi-compact separated schemes over
a field k, and let F and G be quasicoherent sheaves on X and Y respectively.
Show that for every m > 0, there is a natural isomorphism

H™X xp Y, pryFopryG) = P HY(X,F) @ HU(Y,G).
ptrg=m

Solution: (a) Suppose A is a field. We regard the graded modules Z(C') and
B(C') as chain complexes with zero differential. The exact sequences

0—= Z°(C') —= CP 25 Br1(C) ——0
yield a long exact sequence of complexes

0—=Z(C) —=C -~ B(C) —0.

Since we are over a field, tensoring (of complexes) preserves exactness, and we
obtain an exact sequence

0—=Z(C)®D—=C®D—>B(C)® D——=0, 2)

Using that the boundary maps in Z(C') and B(C) are zero, a simple computation
shows that for every m € Z, we have

H™(Z(C)® D) = @ 2°(C) ® HY(D) =: (2(C) ® H*(D))"

and

m

H™(B(C)® D) = @ B"™(C)® H(D) =: (B(C)® H*(D))".
p+g=m
Furthermore, one sees by inspection of the definitions that the connecting homo-
morphism of the long exact sequence of cohomology associated to (2) is just the
inclusion (B(C)® H*(D))" < (Z(D)® H*(D))". This means that the long exact
sequence breaks up into short exact sequences

0— (B(C) ® H*(D))"™' — (2(C) ® H*(D))" — H™(C ® D) — 0.

Since tensoring with H*(D) is exact, the cokernel of (B(C) ® H*(D))m_1 —
(Z2(D) ® H*(D))™ is precisely D, g—m HP(C) ®4 HI(D), and the desired result
follows.

(b) Let U = (U;);er and V = (V;);es be affine open coverings of X and Y respec-
tively. Then U x V := (U; X1 V) j)erxs is an affine open covering of X x; Y. For
the Cech complexes we have

C*(U x V, pryF @ pryG) = C*(U, F) @ C*(V, G).

The desired result then follows directly from part (a) and the fact that Cech
cohomology can be computed with affine open coverings in this situation.



