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Higher Direct Image, Duality, Base Change

1. Let f : X → Y be a projective morphism of noetherian schemes, let L be a rela-
tively ample invertible sheaf on X over Y , and let F be a coherent sheaf on X.
Show:

(a) For all n� 0, the natural map f ∗f∗
(
F ⊗ L⊗n

)
→ F ⊗L⊗n is surjective.

(b) For p > 0 and n� 0, we have Rpf∗(F ⊗ L⊗n) = 0.

Solution: (a) Let U = SpecA ⊂ Y be open and let V := f−1(U). We know from
the course that

f∗(F ⊗ L⊗n)|U ∼= H0(V, (F ⊗ L⊗n)|V )
∼
.

Then the homomorphism being surjective is equivalent to saying that (F⊗L⊗n)|V
is generated by its global sections, but this is true for large n since L|V is ample.
Since Y is quasicompact, we may choose a finite affine open covering Y =

⋃n
i=1 Ui

and n large enough so that the restrictions to each Ui are surjective. This yields
the desired result.

(b) If Y is affine, this translates into Hp(X,F ⊗L⊗n) = 0 for all p > 0 and n� 0,
which is the cohomological criterion for ampleness. Choosing a finite open affine
covering of Y and n large enough to work for each member of the covering as in
part (a) yields the desired result.

2. Show the following:

(a) For any flat morphism f : X → Y the functor f ∗ from the category of OY -
modules to the category of OX-modules is exact.

(b) For any morphism f : X → Y and any flat OY -module G the OX-module f ∗G
is flat.

(c) For any flat morphisms f : X → Y and g : Y → Z the composite g ◦ f is flat.

(d) For any flat morphism f : X → Y and any morphism g : Y ′ → Y the mor-
phism X ×Y Y

′ → Y ′ is flat.

Solution: (a) Let
0→ F ′ → F → F ′′ → 0 (1)

be an exact sequence of OY -modules and consider the sequence

0→ f ∗F ′ → f ∗F → f ∗F ′′ → 0 (2)
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of OX-modules. Let x ∈ X, and let y := f(x). On stalks in (2) we have

0→ F ′y ⊗OY,y
OX,x → Fy ⊗OY,y

OX,x → F ′′y ⊗OY,y
OX,x → 0.

Since (1) is exact, hence exact on stalks, and OX,x is a flat OY,y-module, this is
an exact sequence of OX,x-modules. Since exactness can be checked on stalks, this
implies that (2) is exact.

(b) Let x and y be as above. Then (f ∗G)x ∼= Gy⊗OY,y
OX,x. We need to show that

(f ∗G)x is a flat OX,x-module, which results from the following lemma:

Lemma 1. Let A→ B be a homomorphism of rings and let M be a flat A-module.
Then M ⊗A B is a flat B-module.

Proof. Let 0→ N ′ → N → N ′′ → 0 be an exact sequence of B-modules. Tensor-
ing by B ⊗A M and contracting the tensor product, we obtain

0→ N ′ ⊗A M → N ⊗A M → N ′′ ⊗A M → 0,

which is exact since M is flat. The desired result follows.

(c) Let x, y be as before and let z := g(y). We know that OX,x is flat over OY,y,
which is flat over OZ,z. We just need to show that OX,x is then flat over OZ,z.
This follows from

Lemma 2. Let A → B → C be ring homomorphisms such B is flat over A and
C is flat over B. Then C is flat over A.

Proof. Since the functor ⊗AC is isomorphic to the composition of the exact func-
tors ⊗AB and ⊗BC, it is exact as well. Thus C is flat over A.

(d) Let X ′ := X ×Y Y
′. Let x′ ∈ X ′ with images y′ ∈ Y ′ and x ∈ X and y ∈ Y.

Then OX′,x′ ∼= OX,x ⊗OY,y
OY ′,y′ and is thus flat over OY,y′ by Lemma 2.

**3. Show that every smooth morphism is flat.

Solution: See [Görtz and Wedhorn, Theorem 14.22].

4. Let Y be locally noetherian and consider a projective morphism f : X → Y with
r-dualizing sheaf ωf . Show that for any flat morphism Y ′ → Y from a locally
noetherian scheme Y ′, the dualizing sheaf of X ×Y Y ′ → Y ′ is isomorphic to
pr∗Xωf .

Solution: We separate the proof into steps:

(I) Let g : Y ′ → Y denote the morphism from the exercise. Applying g∗ to the
trace map trf : Rrf∗ωf → OY , we obtain a morphism

g∗(trf ) : g∗Rrf∗ωf → OY ′ .
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Let f ′ := prY and g′ := prX . Since g is flat, the base change homomorphism

g∗Rrf∗ωf → Rrf ′∗g
′∗ωf

is an isomorphism. Precomposing g∗(trf ) with the base change isomorphism, we
obtain a homomorphism

trf ′ : Rrf ′∗g
′∗ωf → OY ′ ,

which we claim makes g′∗ωf into an r-dualizing sheaf for f ′. We need the following
lemma:

Lemma 3. Let f : X → Y be a flat morphism of schemes and let G and G ′
be OY -modules, with G of finite presentation. Then the natural homomorphism
α : f ∗HomOY

(G,G ′)→HomOX
(f ∗G, f ∗G ′) is an isomorphism.

Proof. Let x ∈ X and let y := f(x). Taking stalks and using [Görtz and Wedhorn,
Propositon 7.16], the homomorphism α yields the natural homomorphism

HomOY,y
(Gy,G ′y)⊗OY,y

OX,x → HomOX,x
(Gy ⊗OY,y

OX,x,G ′y ⊗OY,y
OX,x).

It remains to show that this is an isomorphism, which is a consequence of the
following fact from Commutative Algebra: Let R be a ring and let M and N be
R-modules. Let R′ be a flat R-algebra. Then the natural homomorphism

HomR(M,N)⊗R′ → HomR′(M ⊗R R
′, N ⊗R R

′)

is an isomorphism. For a proof of this, see [Stacks, Tag 087R].

(II) Let F be a coherent OX-module. By assumption, (ωf , trf ) yields an isomor-
phism

f∗HomOX
(F , ωf )

∼→HomOY
(Rrf∗F ,OY ).

Applying g∗ and the lemma we obtain an isomorphism

g∗f∗HomOX
(F , ωf )

∼→HomO′
Y

(g∗Rrf∗F ,OY ′).

Since g is flat, the base change homomorphism is an isomorphism. Since g′ is also
flat by Exercise 2d, we can combine this with the lemma to obtain

f ′∗HomOX′ (g
′∗F , g′∗ωf )

∼→HomO′
Y

(Rrf ′∗g
′∗F ,OY ′).

By construction, this is precisely the morphism induced by (g′∗ωf , trf ′). The pair
(g′∗ωf , trf ′) thus satisfies the r-dualizing sheaf condition for sheaves of the form
g′∗F , where F is coherent.
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(III) Let F ′ be an arbitrary coherent sheaf on X ′. Since OX′ ∼= g′∗OX , we have a
presentation of the form g′∗On

X → g′∗Om
X → F ′ → 0. By functoriality, we obtain

a commutative diagram

0

��

0

��
f ′∗HomOX′ (F ′, g′∗ωf )

��

//HomO′
Y

(Rrf ′∗F ′,OY ′)

��
f ′∗HomOX′ (g

′∗Om
X , g

′∗ωf )

��

∼ //HomO′
Y

(Rrf ′∗g
′∗Om

X ,OY ′)

��
f ′∗HomOX′ (g

′∗On
X , g

′∗ωf ) ∼ //HomO′
Y

(Rrf ′∗On
X ,OY ′)

Since the Sheaf-Hom and pushforward are both left exact, the left column is exact.

Recall that the r-dualizing sheaf for f : X → Y is defined for f projective and Y
locally noetherian and such that all fibers of f have dimension 6 r. Since f ′ is the
base change of f , it satisfies the same properties. By [Liu, Propositon 5.2.34], this
implies that Rpf ′∗G ′ = 0 for every p > r and every quasicoherent sheaf G ′ on X ′.
Hence Rrf ′∗ is right exact. Thus both columns in the above diagram are exact,
and we conclude that the top arrow is an isomorphism by the Five Lemma. The
pair (g′∗ωf , trf ′) thus satisfies the r-dualizing sheaf condition for coherent sheaves.

(IV) For a general quasi-coherent sheaf F ′ on X ′, we write F ′ = ∪i∈IF ′i for a
filtered direct system of coherent sheaves Fi, and proceed exactly as in the proof
of the theorem regarding the dualizing sheaf of Pn

Y from §6.5 of the course.

5. (Projection Formula) (Compare Sheet 3, Exercise 2) Consider a morphism f : X → Y ,
an OX-module F and an OY -module G.

(a) Construct a natural base change homomorphism (Rpf∗F)⊗ G → Rpf∗(F ⊗ f ∗G).

(b) If f is separated and quasi-compact and F and G are quasi-coherent and G
is flat, then this is an isomorphism.

Solution: See [Liu, Proposition 5.2.32].

6. Let Y = SpecA and X = ProjA[X, Y ] = P1
A. Let F be the kernel of the homo-

morphism ϕ := (X2, aXY, Y 2) : O⊕3X → OX(2) for some a ∈ A.

(a) Show that F is locally free and the sequence 0 → F → O⊕3X

ϕ→ OX(2) → 0
is exact.

(b) For every integer p compute Hp(X,F).

(c) For every point y ∈ Y with fiber iy : Xy ↪→ X and every integer p compute
Hp(Xy, i

∗
yF) and compare it with Hp(X,F)⊗A k(y).
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Solution: (a) We know that X2 and Y 2 generate OX(2), from which it follows
that ϕ is surjective and hence that the sequence is exact. Since OX(2) is locally
free, the sequence is locally split. This implies that the stalks of F are free and
hence that F is locally free.

(b) In what follows, we abbreviate Hp(X,F) by Hp(F) for all p ∈ Z. Since X is
a curve, we already know that Hp(F) = 0 for p 6= 0, 1. The long exact sequence
associated to the short exact sequence in (a) yields

0 // H0(F) // H0(O⊕3X ) // H0(OX(2)) // H1(F) // H1(O⊕3X )

A⊕3
ϕ // A ·X2 ⊕ A ·XY ⊕ A · Y 2 0.

After splitting off A ⊕ {0} ⊕ A in the second term and AX2 ⊕ AY 2 in the third
we obtain an exact sequence

0 // H0(F) // A a· // A // H1(F) // 0.

We thus have

H0(F) ∼= ker(a : A→ A),

H1(F) ∼= coker(a : A→ A) = A/aA.

(c) Let y ∈ Y . Let Xy := X ×Y Spec k(y) with the canonical closed embedding
iy : Xy ↪→ X. Then the calculation (b) with k(y), a(y) in place of A, a shows that

Hp(Xy, i
∗
yF) ∼=

{
0 if a(y) 6= 0 or p 6= 0, 1,

k(y) if a(y) = 0 and p = 0, 1.

For p = 1 = dim(X) we know from the lecture that the base change homomor-
phism Hp(X,F) ⊗A k(y) → Hp(Xy, i

∗
yF) is an isomorphism, and we see it again

concretely because (A/aA)⊗A k(y) ∼= k(y)/(a(y)). But for p = 0 it could be that
A is an integral domain and a is a non-zero element of the prime ideal associ-
ated to y, in which case H0(X,F) = 0 but H0(Xy, i

∗
yF) 6= 0, so the base change

homomorphism cannot be an isomorphism.
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