D-MATH
Prof. Richard Pink

Algebraic Geometry II
HS 2017

Solutions 12

Euler Characteristic, Riemann-Roch, Residues

1. (Riemann-Roch for locally free sheaves) Let X be a connected smooth projective curve of genus g over an algebraically closed field k.
(a) For every non-zero locally free sheaf \mathcal{F} there exists an invertible sheaf $\mathcal{L} \subset \mathcal{F}$ such that $\mathcal{F} / \mathcal{L}$ is locally free.
(b) For any locally free sheaf \mathcal{F} of rank r over X define $\operatorname{deg}(\mathcal{F}):=\operatorname{deg}\left(\bigwedge^{r} \mathcal{F}\right)$ and prove that

$$
\chi(X, \mathcal{F})=r \cdot(1-g)+\operatorname{deg}(\mathcal{F})
$$

Solution: (a) Let $U \subset X$ be a nonempty open subscheme such that $\left.\mathcal{F}\right|_{U}$ is free and let $j: U \hookrightarrow X$ be the canonical embedding. Since X is integral, the adjunction map $\mathcal{F} \rightarrow j_{*} j^{*} \mathcal{F}$ is injective; we identify \mathcal{F} with its image. Choose a direct summand $\mathcal{M} \subset j^{*} \mathcal{F}$ which is free of rank 1 . Since j_{*} is left exact, we have $j_{*} \mathcal{M} \subset j_{*} j^{*} \mathcal{F}$. We claim that $\mathcal{L}:=\mathcal{F} \cap j_{*} \mathcal{M}$ has the desired property.
For this recall that the local rings of X are principal ideal domains, and that a finitely generated module over a principal ideal domain is free if and only if it is torsion free. Since \mathcal{L} is a subsheaf of \mathcal{F}, it is finitely generated and torsion free, and we thus deduce that \mathcal{L} is locally free. Moreover by construction $\left.\mathcal{L}\right|_{U} \cong \mathcal{M}$, and so \mathcal{L} has rank 1 . Also by construction and the exactness of j_{*} we have

$$
\mathcal{F} / \mathcal{L}=\mathcal{F} /\left(\mathcal{F} \cap j_{*} \mathcal{M}\right) \hookrightarrow j_{*} j^{*} \mathcal{F} / j_{*} \mathcal{M} \cong j_{*}\left(j^{*} \mathcal{F} / \mathcal{M}\right)
$$

Being the j_{*} of a free sheaf the right hand side is torsion free; hence $\mathcal{F} / \mathcal{L}$ is torsion free. But $\mathcal{F} / \mathcal{L}$ is also a quotient of \mathcal{F}; hence finitely generated; hence locally free.
(b) We proceed by induction on r. If $r=0$, the sheaf $\bigwedge^{r} \mathcal{F}=\mathcal{O}_{X}$ has degree 0 and both sides are 0 . If $r=1$, the statement is version 1 of the Riemann-Roch theorem from the course. Suppose $r>1$. Let \mathcal{L} be as in part (a) and set $\mathcal{E}:=\mathcal{F} / \mathcal{L}$. Then we have an exact sequence $0 \rightarrow \mathcal{L} \rightarrow \mathcal{F} \rightarrow \mathcal{E} \rightarrow 0$. Since rank is additive, we see that \mathcal{E} has rank $r-1$. By the induction hypothesis, we have

$$
\begin{aligned}
\chi(X, \mathcal{F})=\chi(X, \mathcal{L})+\chi(X, \mathcal{E})=(1-g)+ & \operatorname{deg}(\mathcal{L})+(r-1)(1-g)+\operatorname{deg}(\mathcal{E}) \\
= & r(1-g)+\operatorname{deg}(\mathcal{L})+\operatorname{deg}(\mathcal{E}) .
\end{aligned}
$$

Since the exact sequence above induces an isomorphism $\bigwedge^{r} \mathcal{F} \cong \bigwedge^{r-1} \mathcal{E} \otimes \mathcal{L}$, we deduce that $\operatorname{deg}(\mathcal{L})+\operatorname{deg}(\mathcal{E})=\operatorname{deg}(\mathcal{F})$, which yields the desired result.
2. For an arbitrary integral projective curve X over an algebraically closed field k, the arithmetic genus of X is defined as $p_{a}(Y):=h^{1}\left(X, \mathcal{O}_{X}\right)$. Let $\pi: \tilde{X} \rightarrow X$ be the normalization of X.
(a) Show that $p_{a}(X)=p_{a}(\tilde{X})+\sum_{P \in X}^{\prime} \operatorname{length}_{\mathcal{O}_{X, P}}\left(\pi_{*} \mathcal{O}_{\tilde{X}} / \mathcal{O}_{X}\right)_{P}$.
(b) Deduce that $p_{a}(X)=0$ if and only if X is nonsingular of genus 0 .
(c) Determine $p_{a}(X)$ for the nodal cubic curve $X:=V\left(C(C-B) A-B^{3}\right) \subset \mathbb{P}_{k}^{2}$ and the cuspidal cubic curve $X:=V\left(B^{2} C-A^{3}\right) \subset \mathbb{P}_{k}^{2}$.

Solution: (a) The morphism π is birational, and it is finite because X is noetherian. Thus $\pi_{*} \mathcal{O}_{\tilde{X}}$ is a coherent sheaf of \mathcal{O}_{X}-modules and the homomorphism $\pi^{b}: \mathcal{O}_{X} \rightarrow \pi_{*} \mathcal{O}_{\tilde{X}}$ is an isomorphism except at the finitely many closed points where X is singular. Since X is integral, it follows that π^{b} is injective everywhere. We will study the long exact cohomology sequence associated to the short exact sequence $0 \rightarrow \mathcal{O}_{X} \rightarrow \pi_{*} \mathcal{O}_{\tilde{X}} \rightarrow\left(\pi_{*} \mathcal{O}_{\tilde{X}}\right) / \mathcal{O}_{X} \rightarrow 0$.
Since π is affine, we have natural isomorphism $H^{i}\left(\tilde{X}, \mathcal{O}_{\tilde{X}}\right) \cong H^{i}\left(X, \pi_{*} \mathcal{O}_{\tilde{X}}\right)$ for each i. As X and \tilde{X} are integral projective, we have $H^{0}\left(X, \mathcal{O}_{X}\right)=H^{0}\left(\tilde{X}, \mathcal{O}_{\tilde{X}}\right)=k$. Since $\pi_{*} \mathcal{O}_{\tilde{X}} / \mathcal{O}_{X}$ is a coherent sheaf with finite support, the group of its global sections is the direct sum of its stalks and its H^{1} vanishes. The long exact cohomology sequence thus reads

$$
0 \longrightarrow k \longrightarrow k \xrightarrow{(*)} \bigoplus_{P \in X}\left(\pi_{*} \mathcal{O}_{\tilde{X}} / \mathcal{O}_{X}\right)_{P} \longrightarrow H^{1}\left(X, \mathcal{O}_{X}\right) \longrightarrow H^{1}\left(\tilde{X}, \mathcal{O}_{\tilde{X}}\right) \longrightarrow 0
$$

The homomorphism (*) must therefore vanish, and taking dimensions yields the desired formula in (a).
(b) Every term on the right hand side of the equation in (a) is non-negative. Thus $p_{a}(X)=0$ if and only if $p_{a}(\tilde{X})=0$ and $\mathcal{O}_{X}=\pi_{*} \mathcal{O}_{\tilde{X}}$. The latter is equivalent to $X=\tilde{X}$ (for instance because it means that each stalk $\mathcal{O}_{X, P}$ is integrally closed). Thus $p_{a}(X)=0$ if and only if X is non-singular of genus 0 .
(c) Each curve has a closed embedding $i: X \hookrightarrow \mathbb{P}_{k}^{2}$ as a curve of degree 3; so we have a short exact sequence $0 \rightarrow \mathcal{O}_{\mathbb{P}_{k}^{2}}(-3) \rightarrow \mathcal{O}_{\mathbb{P}_{k}^{2}} \rightarrow i_{*} \mathcal{O}_{X} \rightarrow 0$, regardless of singularities. The associated long exact cohomology sequence

shows that $p_{a}(X)=h^{1}\left(X, \mathcal{O}_{X}\right)=1$.
Aliter: By earlier computations each curve has normalization $\tilde{X} \cong \mathbb{P}_{k}^{1}$ and precisely one singular point P. Show that $\operatorname{dim}_{k}\left(\pi_{*} \mathcal{O}_{\tilde{X}} / \mathcal{O}_{X}\right)_{P}=1$ by an explicit local calculation and use (a). The local calculation amounts to the fact that

$$
\operatorname{dim}_{k}\left(k[t] / k\left[t^{2}, t^{2}(1+t)\right]\right)=\operatorname{dim}_{k}\left(k[t] / k\left[t^{2}, t^{3}\right]\right)=1 .
$$

3. (Hilbert polynomial of a coherent sheaf) Let X be a projective scheme over a field k with a very ample invertible sheaf \mathcal{L} and an arbitrary coherent sheaf \mathcal{F}. Prove:
(a) There is a unique polynomial $P_{\mathcal{F}} \in \mathbb{Q}[T]$ such that $\chi\left(X, \mathcal{F} \otimes \mathcal{L}^{\otimes m}\right)=P_{\mathcal{F}}(m)$ for all $m \in \mathbb{Z}$.
(b) This polynomial can be written uniquely as $P_{\mathcal{F}}(T)=\sum_{n}^{\prime} a_{n}\binom{T}{n}$ with $a_{n} \in \mathbb{Z}$.
*(c) If $\mathcal{F} \neq 0$, the degree of $P_{\mathcal{F}}$ is equal to the dimension of the support of \mathcal{F} and the highest coefficient of $P_{\mathcal{F}}$ is positive.
(d) If X is a smooth connected curve and k is algebraically closed, the highest coefficient of $P_{\mathcal{O}_{X}}$ is $\operatorname{deg}(\mathcal{L})$.
*(e) Repeat the same with an arbitrary invertible sheaf \mathcal{L}, assuming only in (c) that \mathcal{L} is ample.

Solution: First note that for any field extension L / k and the base change morphism $\pi: X_{L} \rightarrow X$, we have $\chi\left(X, \mathcal{F} \otimes \mathcal{L}^{\otimes m}\right)=\chi\left(X_{L}, \pi^{*} \mathcal{F} \otimes\left(\pi^{*} \mathcal{L}\right)^{\otimes m}\right)$. In all parts of the exercise we may thus assume that k is algebraically closed.

The uniqueness in (a) and (b) is a direct consequence of the fact that a univariate polynomial is determined by its values at any infinite set of points.
Recall from $\S 5.6$ that there is a unique smallest closed subscheme Y with embedding $i: Y \hookrightarrow X$ such that $\mathcal{F} \xrightarrow{\sim} i_{*} i^{*} \mathcal{F}$, called the scheme-theoretic support of \mathcal{F}. For every $m \in \mathbb{Z}$ we then have $\chi\left(X, \mathcal{F} \otimes \mathcal{L}^{\otimes m}\right)=\chi\left(Y, i^{*} \mathcal{F} \otimes\left(i^{*} \mathcal{L}\right)^{\otimes m}\right)$. Thus we may reduce ourselves to the case that $Y=X$.
We then do induction on $d:=\operatorname{dim} X$. If X is finite, we have $\mathcal{L} \cong \mathcal{O}_{X}$ and hence $H^{0}\left(X, \mathcal{F} \otimes \mathcal{L}^{\otimes m}\right) \cong \Gamma(X, \mathcal{F})$ and all other cohomology groups are zero. Thus $\chi\left(X, \mathcal{F} \otimes \mathcal{L}^{\otimes m}\right)$ is an integer that is independent of m and >0 if $\mathcal{F} \neq 0$; proving (a) through (c) in this case.

If $d>0$, let $i: X \hookrightarrow \mathbb{P}_{k}^{N}$ be a closed embedding with $i^{*} \mathcal{O}(1) \cong \mathcal{L}$. Since k is algebraically closed, there exists a hyperplane $L \subset \mathbb{P}_{k}^{N}$ containing none of the irreducible components of $i(X)$. The linear form defining L yields a section $\ell \in$ $\mathcal{L}(X)$ which generates \mathcal{L} over an open dense subset $U \subset X$. Define coherent sheaves $\mathcal{F}^{\prime}, \mathcal{F}^{\prime \prime}$, and $\overline{\mathcal{F}}$ on X by the exact sequences

After tensoring with $\mathcal{L}^{\otimes m}$ the additivity of the Euler characteristic in short exact sequences shows that

$$
\chi\left(X, \mathcal{F} \otimes \mathcal{L}^{\otimes m+1}\right)-\chi\left(X, \mathcal{F} \otimes \mathcal{L}^{\otimes m}\right)=\chi\left(X, \mathcal{F}^{\prime \prime} \otimes \mathcal{L}^{\otimes m}\right)-\chi\left(X, \mathcal{F}^{\prime} \otimes \mathcal{L}^{\otimes m}\right)
$$

Also \mathcal{F}^{\prime} and $\mathcal{F}^{\prime \prime}$ vanish on U, so their scheme-theoretic support has dimension $\leqslant d-1$; so by the induction hypothesis the right hand side is a polynomial of degree $\leqslant d-1$ in m. Write it in the form $\sum_{n=0}^{d-1} a_{n}\binom{m}{n}$. Since $\binom{m}{n}=\binom{m+1}{n+1}-\binom{m}{n+1}$, it follows that

$$
\chi\left(X, \mathcal{F} \otimes \mathcal{L}^{\otimes m+1}\right)-\sum_{n=0}^{d-1} a_{n}\binom{m+1}{n+1}=\chi\left(X, \mathcal{F} \otimes \mathcal{L}^{\otimes m}\right)-\sum_{n=0}^{d-1} a_{n}\binom{m}{n+1} .
$$

This value is therefore independent of m, and calling it b we deduce that

$$
\begin{equation*}
\chi\left(X, \mathcal{F} \otimes \mathcal{L}^{\otimes m}\right)=\sum_{n=1}^{d} a_{n-1}\binom{m}{n}+b \tag{*}
\end{equation*}
$$

for all m. This proves both (a) and (b).
To do the induction step for (c) we claim that we can choose ℓ such that $\mathcal{F}^{\prime}=0$. This involves associated primes for modules, or in more down to earth terms: Cover X by finitely many open affines Spec A_{i} and suppose that the $\left.\mathcal{F}\right|_{\text {Spec } A_{i}}=\tilde{M}_{i}$. Then M_{i} is a finitely generated A_{i}-module; hence there exists a sequence of submodules $0=M_{i, 0} \subset M_{i, 1} \subset \ldots \subset M_{i, r_{i}}$ such that each $M_{i, j} / M_{i, j-1} \cong A_{i} / \mathfrak{a}_{i, j}$ for some ideal $\mathfrak{a}_{i, j}$. Each associated prime of $\mathfrak{a}_{i, j}$ corresponds to an irreducible subset of Spec A_{i}, whose closure is an irreducible subset of X. Let \mathcal{S} denote the set of all irreducible closed subsets of X obtained in this way for all i and j. If the hyperplane L chosen above does not contain any of the irreducible subsets in \mathcal{S}, multiplication by ℓ is injective on each $A_{i} / \mathfrak{a}_{i, j}$ and hence on each M_{i}; from which one can deduce that $\mathcal{F}^{\prime}=0$. (Compare the discussion following [Vakil, Exercise 18.6.A].)
By contrast, recall that the support of \mathcal{F} is X. Thus the support of $\mathcal{F}^{\prime \prime}$ is $X \cap L$. Also we have $d=\operatorname{dim} X>0$. Moreover L meets every irreducible component of X of dimension d and the intersection has dimension $d-1$ by Krull's principal ideal theorem. Thus the support of $\mathcal{F}^{\prime \prime}$ has dimension $d-1$. By the induction hypothesis we thus have $\chi\left(X, \mathcal{F}^{\prime \prime} \otimes \mathcal{L}^{\otimes m}\right)=\sum_{n=0}^{d-1} a_{n}\binom{m}{n}$ with $a_{d-1}>0$. The formula (*) above then shows that $\chi\left(X, \mathcal{F} \otimes \mathcal{L}^{\otimes m}\right)=\sum_{n=1}^{d} a_{n-1}\binom{m}{n}+b$ with highest coefficient >0, as desired.

In the situation of (d) observe that, with the definition of $\operatorname{deg}(\mathcal{L})$ from the course, by Riemann-Roch we have

$$
\chi\left(X, \mathcal{L}^{\otimes m}\right)=1-g+\operatorname{deg}\left(\mathcal{L}^{\otimes m}\right)=1-g+\operatorname{deg}(\mathcal{L}) \cdot m .
$$

Thus $P_{\mathcal{O}_{X}}(T)=1-g+\operatorname{deg}(\mathcal{L}) \cdot T$, which implies (e).
For (e) consider an arbitrary invertible sheaf \mathcal{L}. Choose an auxiliary very ample invertible sheaf \mathcal{L}_{1} such that $\mathcal{L}_{2}:=\mathcal{L} \otimes \mathcal{L}_{1}$ is also very ample. Show in a similar fashion that $\chi\left(X, \mathcal{F} \otimes \mathcal{L}_{1}^{\otimes m_{1}} \otimes \mathcal{L}_{2}^{\otimes m_{2}}\right)$ is a polynomial of total degree $\leqslant \operatorname{dim}(X)$ in $\left(m_{1}, m_{2}\right)$. The special case $\left(m_{1}, m_{2}\right)=(-m, m)$ then yields everything except
the positivity (c). For that assume that \mathcal{L} is ample and choose $n>0$ such that $\mathcal{L}^{\otimes n}$ is very ample. Then the polynomial for $\mathcal{L}^{\otimes n}$ in place of \mathcal{L} is obtained from that for \mathcal{L} by substituting $n T$ for T. This leaves the sign of the highest coefficient unchanged.
4. Let k be a field. Show that for any $f \in k((t))^{\times}$and any $n \in \mathbb{Z}$ we have

$$
\operatorname{res}_{t}\left(f^{n} d f\right)=\left\{\begin{array}{cl}
\operatorname{ord}_{t}(f) & \text { if } n=-1 \\
0 & \text { otherwise }
\end{array}\right.
$$

Solution: If $\operatorname{ord}_{t}(f)=0$, then $\operatorname{ord}_{t}\left(f^{n} \frac{d f}{d t}\right) \geqslant 0$ for all n; hence $\operatorname{res}_{t}\left(f^{n} d f\right)=0$. If $\operatorname{ord}_{t}(f)>0$, the differential $f^{n} d f=f^{n} \frac{d f}{d t} d t$ arises by the substitution $s=f(t)$ from the differential $s^{n} d s$. By Proposition 2 of $\S 7.3$ of the course it follows that

$$
\operatorname{res}_{t}\left(f^{n} d f\right)=\operatorname{res}_{s}\left(\operatorname{tr}_{k((t)) / k((s))}\left(s^{n} d s\right)\right)=\operatorname{res}_{s}\left(\operatorname{ord}_{t}(f) \cdot s^{n} d s\right)=\operatorname{ord}_{t}(f) \cdot \delta_{n,-1} .
$$

If $\operatorname{ord}_{t}(f)<0$, write $f=g^{-1}$; then the differential $f^{n} d f=g^{-n} d g^{-1}=-g^{-n-2} d g$ arises by the substitution $s=g(t)$ from the differential $-s^{-n-2} d s$. By Proposition 2 of $\S 7.3$ of the course it follows that

$$
\begin{aligned}
\operatorname{res}_{t}\left(f^{n} d f\right) & =\operatorname{res}_{s}\left(\operatorname{tr}_{k((t)) / k((s))}\left(-s^{-n-2} d s\right)\right)=\operatorname{res}_{s}\left(\operatorname{ord}_{t}(g) \cdot\left(-s^{-n-2} d s\right)\right) \\
& =-\operatorname{ord}_{t}(g) \cdot \delta_{-n-2,-1}=\operatorname{ord}_{t}(f) \cdot \delta_{n,-1} .
\end{aligned}
$$

5. Let k be an algebraically closed field of characteristic $\neq 2$. Let X be the connected smooth projective curve over k with the affine equation $y^{2}=f(x)$ for a separable polynomial $f(x) \in k[x]$ of degree 3. Denote the function field of X by K.
(a) Show that $\Gamma\left(X, \Omega_{X / k}\right)=k \cdot \frac{d x}{y}$.
(b) Verify the residue theorem for the rational differentials $d x, \frac{d x}{x}, \frac{x d x}{y} \in \Omega_{K / k}$ by explicitly computing all residues.

Solution: Write $f(x)=\left(x-e_{1}\right)\left(x-e_{2}\right)\left(x-e_{3}\right)$ for $e_{i} \in k$ distinct. By the jacobian criterion the affine curve $U:=\operatorname{Spec} k[X, Y] /\left(Y^{2}-f(X)\right)$ is non-singular. Thus U is an affine open chart in X, where x, y are the residue classes of X, Y. The closure of U under the standard embedding $U \hookrightarrow \mathbb{A}_{k}^{2} \hookrightarrow \mathbb{P}_{k}^{2}$ is given by the homogeneous equation $Y^{2} Z=\left(X-e_{1} Z\right)\left(X-e_{2} Z\right)\left(X-e_{3} Z\right)$, which again by the jacobian criterion is non-singular and hence isomorphic to X. From this equation we see that $X \backslash U$ consists of the single point in projective coordinates $(0: 1: 0)$, which we denote simply as $\widetilde{\infty} \in X$. A local equation for X near $\widetilde{\infty}$ is obtained by substituting $x=s^{-1}$ and $y=t s^{-2}$, resulting in the equation $t^{2}=g(s)$ with $g(s):=s\left(1-e_{1} s\right)\left(1-e_{2} s\right)\left(1-e_{3} s\right)$, where $\widetilde{\infty}$ has the coordinates $(s, t)=(0,0)$. Also, the function x defines a separable morphism $\pi: X \rightarrow \mathbb{P}_{k}^{1}$ of degree 2 with $\pi(\widetilde{\infty})=\infty$. This has ramification degree 2 at the points $P_{i}:=\left(e_{i}, 0\right) \in|X|$ and at $\widetilde{\infty}$, and 1 elsewhere.

Next observe that the equation $y^{2}=f(x)$ implies that $2 y d y=f^{\prime}(x) d x$ in $\Omega_{K / k}$, where $f^{\prime}:=\frac{d f}{d x}$. Consider any point $P=(\xi, \eta) \in|X| \backslash\{\widetilde{\infty}\}$. In the case $\eta \neq 0$ we have $2 \eta \neq 0$ and $x-\xi$ is a local uniformizer and hence $\Omega_{X / k, P}=\mathcal{O}_{X, P} \cdot d x$. By contrast, in the case $\eta=0$ we have $f(\xi)=0$ and hence $f^{\prime}(\xi) \neq 0$, so y is a local uniformizer and $\Omega_{X / k, P}=\mathcal{O}_{X, P} \cdot d y$. At $\widetilde{\infty}$ observe that $t^{2}=g(s)$ with $\operatorname{ord}_{s}(g)=1$; thus s is equal to t^{2} times a unit at $\widetilde{\infty}$; hence $t=y / x^{2}$ is a local uniformizer at $\widetilde{\infty}$ and $\Omega_{X / k, \widetilde{\infty}}=\mathcal{O}_{X, \widetilde{\infty}} \cdot d t$.
(a) Since x and y are regular functions on U, the differential $\frac{d x}{y} \in \Omega_{K / k}$ is regular on U except possibly where $y=0$. But by the equation $2 y d y=f^{\prime}(x) d x$ in $\Omega_{K / k}$ it is also equal to $\frac{2 d y}{f^{\prime}(x)}$. In this form it extends to a regular differential at all points with $f^{\prime}(x) \neq 0$; hence in particular to those with $y=0$. At $\widetilde{\infty}$ observe that $\frac{d x}{y}=\frac{d s^{-1}}{t s^{-2}}=-\frac{d s}{t}$. But the equation $t^{2}=g(s)$ implies that $2 t d t=g^{\prime}(s) d s$ with $g^{\prime}(0) \neq 0$; hence $-\frac{d s}{t}=-\frac{2 d t}{g^{\prime}(s)}$ is regular at $\widetilde{\infty}$. Together this shows that $\frac{d x}{y}$ defines an element of $\Gamma\left(X, \Omega_{X / k}\right)$.
We have seen in the course that every plane cubic curve has $\Omega_{X / k} \cong \mathcal{O}_{X}$ and hence $\operatorname{dim}_{k} \Gamma\left(X, \Omega_{X / k}\right)=1$. It follows that the non-zero global section $\frac{d x}{y}$ generates $\Gamma\left(X, \Omega_{X / k}\right)$. (Aliter: With the same local computations show that $\frac{d x}{y}$ is a generator of $\Omega_{X / k}$ everywhere. Thus $\Gamma\left(X, \Omega_{X / k}\right)=\Gamma\left(X, \mathcal{O}_{X} \cdot \frac{d x}{y}\right)=\Gamma\left(X, \mathcal{O}_{X}\right) \cdot \frac{d x}{y}=k \cdot \frac{d x}{y}$.)
(b) To simplify the computation of the residue at one of the points $P=\left(e_{i}, 0\right)$ or $\widetilde{\infty}$ where $\pi: X \rightarrow \mathbb{P}_{k}^{1}$ is ramified, we use the equation $\operatorname{res}_{P}(\omega)=\operatorname{res}_{\pi(P)}\left(\operatorname{tr}_{K / k(x)}(\omega)\right)$ proved in the course, where $\operatorname{res}_{\pi(P)}$ denotes the residue taken on \mathbb{P}_{k}^{1}.
i. The differential $d x$ is regular on U and hence $\operatorname{res}_{P}(d x)=0$ there. At $\widetilde{\infty}$ we use the trace. Since $d x$ comes from a differential on \mathbb{P}_{k}^{1}, we get $\operatorname{res} \widetilde{\infty}(d x)=$ $\operatorname{res}_{\infty}\left(\operatorname{tr}_{K / k(x)}(d x)\right)=\operatorname{res}_{\infty}(2 d x)$. But the substitution $x=s^{-1}$ and the quotient rule show that $d x=d s^{-1}=-\frac{d s}{s^{2}}$ and hence $\operatorname{res}_{\infty}(2 d x)=\operatorname{res}_{s}\left(-2 \frac{d s}{s^{2}}\right)=0$. $\operatorname{Thus~res}_{P}(d x)=0$ for all $P \in|X|$; and in particular $\sum_{P \in|X|} \operatorname{res}_{P}(d x)=0$.
ii. The differential $\frac{d x}{x}$ is regular on U except where $x=0$; hence its residues are zero there. The situation at $x=0$ depends: If some $e_{i}=0$, we have only the point $P=(0,0)$ to consider and the morphism π is ramified there, and we get $\operatorname{res}_{P}\left(\frac{d x}{x}\right)=\operatorname{res}_{0}\left(\operatorname{tr}_{K / k(x)}\left(\frac{d x}{x}\right)\right)=\operatorname{res}_{x}\left(2 \frac{d x}{x}\right)=2$. Otherwise there are two points $(0, \pm \eta)$ to consider with $\eta \neq 0$, and x is a uniformizer at each of them, so we directly get $\operatorname{res}_{P}\left(\frac{d x}{x}\right)=1$ at these two points. At infinity we can again use the trace and the substitution $x=s^{-1}$, obtaining $\frac{d x}{x}=-\frac{d s}{s}$ and $\operatorname{res}_{\widetilde{\infty}}\left(\frac{d x}{x}\right)=\operatorname{res}_{\infty}\left(\operatorname{tr}_{K / k(x)}\left(\frac{d x}{x}\right)\right)=\operatorname{res}_{\infty}\left(2 \frac{d x}{x}\right)=\operatorname{res}_{s}\left(-2 \frac{d s}{s}\right)=-2$. The sum of all residues is therefore $2+(-2)=0$, respectively $1+1+(-2)=0$.
iii. Since the function x and the differential $\frac{d x}{y}$ are both regular on U, so is the differential $\frac{x d x}{y}$. Thus its residues are zero there. At $\widetilde{\infty}$ we have $\operatorname{res}_{\widetilde{\infty}}\left(\frac{x d x}{y}\right)=$ $\operatorname{res}_{\infty}\left(\operatorname{tr}_{K / k(x)}\left(\frac{x d x}{y}\right)\right)$. Since $\frac{x d x}{y^{2}}=\frac{x d x}{f(x)}$ comes from a differential on \mathbb{P}_{k}^{1}, we have $\operatorname{tr}_{K / k(x)}\left(\frac{x d x}{y}\right)=\operatorname{tr}_{K / k(x)}(y) \cdot \frac{x d x}{f(x)}$. But the equation $y^{2}=f(x)$ also implies
that $\operatorname{tr}_{K / k(x)}(y)=0$. Thus $\operatorname{res}_{P}(d x)=0$ for all $P \in|X|$; and in particular $\sum_{P \in|X|} \operatorname{res}_{P}(d x)=0$.
Aliter: To compute the residues at $\widetilde{\infty}$ without using the trace we substitute $x=s^{-1}$ and $y=t s^{-2}$ as before, so that $d x=-\frac{d s}{s^{2}}=\frac{-2 t d t}{s^{2} g^{\prime}(s)}$ with $g^{\prime}(0) \neq 0$ and the local uniformizer t. The equation $t^{2}=g(s)=s+O\left(s^{2}\right)$ implies an expansion $s=t^{2}+\ldots$ as a power series in $k\left[\left[t^{2}\right]\right]$. We proceed in increasing order of difficulty:
ii. Here $\frac{d x}{x}=\frac{1}{s^{-1}} \cdot \frac{-2 t d t}{s^{2} g^{\prime}(s)}=\frac{-2 t^{2} d t}{s g^{\prime}(s) t}=-2 \cdot \frac{g(s)}{s g^{\prime}(s)} \cdot \frac{d t}{t}$, where $\frac{g(s)}{s g^{\prime}(s)}$ is a unit at $\widetilde{\infty}$ with constant term 1. Thus $\frac{d x}{x}=-2 \cdot \frac{d t}{t}+($ a differential regular at $\widetilde{\infty})$; hence the residue is -2 .
iii. Here $\frac{x d x}{y}=\frac{s^{-1}}{t s^{-2}} \cdot \frac{-2 t d t}{s^{2} g^{\prime}(s)}=\frac{-2}{s g^{\prime}(s)} \cdot d t$ has a pole of order 2 at $\widetilde{\infty}$. But expanding $\frac{-2}{s g^{\prime}(s)}$ yields a Laurent series in t^{2}; hence the expansion of $\frac{-2}{s g^{\prime}(s)} \cdot d t$ does not contain the term $\frac{d t}{t}$; so the residue is 0 .
i. Here $d x=\frac{-2 t^{2} d t}{s^{2} g^{\prime}(s) t}=\frac{-2 g(s)}{s^{2} g^{\prime}(s)} \cdot \frac{d t}{t}$ has a pole of order 3 at $\widetilde{\infty}$, so we must calculate initial parts of Laurent series in order to identify the coefficient of $\frac{d t}{t}$. Write $g(s)=s-e s^{2}+O\left(s^{3}\right)$ with $e \in k$. Then the equation $t^{2}=g(s)$ implies that $s=t^{2}+e s^{2}+O\left(s^{3}\right)=t^{2}+e t^{4}+O\left(t^{6}\right)$. Therefore

$$
\frac{g(s)}{s^{2} g^{\prime}(s)}=\frac{s-e s^{2}+O\left(s^{3}\right)}{s^{2}\left(1-2 e s+O\left(s^{2}\right)\right)}=\frac{1+e s+O\left(s^{2}\right)}{s}=\frac{1+e t^{2}+O\left(t^{4}\right)}{t^{2}+e t^{4}+O\left(t^{6}\right)}=\frac{1+O\left(t^{4}\right)}{t^{2}} .
$$

Thus $d x=-2 \cdot \frac{1+O\left(t^{4}\right)}{t^{2}} \cdot \frac{d t}{t}=-2 \cdot \frac{d t}{t^{3}}+($ a differential regular at $\widetilde{\infty})$; hence the residue is 0 .

If some $e_{i}=0$, we proceed in the same way to compute the residue at $P=(0,0)$: Here $\frac{d x}{x}=\frac{2 y d y}{f^{\prime}(x) x}=\frac{2 y^{2} d y}{f^{\prime}(x) x y}=2 \cdot \frac{f(x)}{f^{\prime}(x) x} \cdot \frac{d y}{y}$ and $f(x)=a x+O\left(x^{2}\right)$ for some $a \in k^{\times}$; hence $\frac{f(x)}{f^{\prime}(x) x}$ is a unit at P with constant term 1. Thus $\frac{d x}{x}=2 \cdot \frac{d y}{y}+$ (a differential regular at P); hence the residue is 2 .

