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Solutions 12

Euler Characteristic, Riemann-Roch, Residues

1. (Riemann-Roch for locally free sheaves) Let X be a connected smooth projective
curve of genus g over an algebraically closed field k.

(a) For every non-zero locally free sheaf F there exists an invertible sheaf L ⊂ F
such that F/L is locally free.

(b) For any locally free sheaf F of rank r over X define deg(F) := deg(
∧rF)

and prove that
χ(X,F) = r · (1− g) + deg(F).

Solution: (a) Let U ⊂ X be a nonempty open subscheme such that F|U is
free and let j : U ↪→ X be the canonical embedding. Since X is integral, the
adjunction map F → j∗j

∗F is injective; we identify F with its image. Choose a
direct summand M⊂ j∗F which is free of rank 1. Since j∗ is left exact, we have
j∗M⊂ j∗j

∗F . We claim that L := F ∩ j∗M has the desired property.

For this recall that the local rings of X are principal ideal domains, and that a
finitely generated module over a principal ideal domain is free if and only if it is
torsion free. Since L is a subsheaf of F , it is finitely generated and torsion free,
and we thus deduce that L is locally free. Moreover by construction L|U ∼= M,
and so L has rank 1. Also by construction and the exactness of j∗ we have

F/L = F/(F ∩ j∗M) ↪→ j∗j
∗F/j∗M ∼= j∗(j

∗F/M).

Being the j∗ of a free sheaf the right hand side is torsion free; hence F/L is torsion
free. But F/L is also a quotient of F ; hence finitely generated; hence locally free.

(b) We proceed by induction on r. If r = 0, the sheaf
∧r F = OX has degree 0 and

both sides are 0. If r = 1, the statement is version 1 of the Riemann-Roch theorem
from the course. Suppose r > 1. Let L be as in part (a) and set E := F/L. Then
we have an exact sequence 0 → L → F → E → 0. Since rank is additive, we see
that E has rank r − 1. By the induction hypothesis, we have

χ(X,F) = χ(X,L) + χ(X, E) = (1− g) + deg(L) + (r − 1)(1− g) + deg(E)

= r(1− g) + deg(L) + deg(E).

Since the exact sequence above induces an isomorphism
∧r F ∼=

∧r−1 E ⊗ L, we
deduce that deg(L) + deg(E) = deg(F), which yields the desired result.
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2. For an arbitrary integral projective curve X over an algebraically closed field k,
the arithmetic genus of X is defined as pa(Y ) := h1(X,OX). Let π : X̃ → X be
the normalization of X.

(a) Show that pa(X) = pa(X̃) +
∑′

P∈X lengthOX,P
(π∗OX̃/OX)P .

(b) Deduce that pa(X) = 0 if and only if X is nonsingular of genus 0.

(c) Determine pa(X) for the nodal cubic curve X := V (C(C − B)A− B3) ⊂ P2
k

and the cuspidal cubic curve X := V (B2C − A3) ⊂ P2
k.

Solution: (a) The morphism π is birational, and it is finite because X is noethe-
rian. Thus π∗OX̃ is a coherent sheaf of OX-modules and the homomorphism
π[ : OX → π∗OX̃ is an isomorphism except at the finitely many closed points
where X is singular. Since X is integral, it follows that π[ is injective everywhere.
We will study the long exact cohomology sequence associated to the short exact
sequence 0→ OX → π∗OX̃ → (π∗OX̃)/OX → 0.

Since π is affine, we have natural isomorphism H i(X̃,OX̃) ∼= H i(X, π∗OX̃) for
each i. AsX and X̃ are integral projective, we haveH0(X,OX) = H0(X̃,OX̃) = k.
Since π∗OX̃/OX is a coherent sheaf with finite support, the group of its global sec-
tions is the direct sum of its stalks and its H1 vanishes. The long exact cohomology
sequence thus reads

0 // k // k
(∗) //

⊕
P∈X

(π∗OX̃/OX)P // H1(X,OX) // H1(X̃,OX̃) // 0.

The homomorphism (∗) must therefore vanish, and taking dimensions yields the
desired formula in (a).

(b) Every term on the right hand side of the equation in (a) is non-negative. Thus
pa(X) = 0 if and only if pa(X̃) = 0 and OX = π∗OX̃ . The latter is equivalent to
X = X̃ (for instance because it means that each stalk OX,P is integrally closed).
Thus pa(X) = 0 if and only if X is non-singular of genus 0.

(c) Each curve has a closed embedding i : X ↪→ P2
k as a curve of degree 3; so we

have a short exact sequence 0 → OP2
k
(−3) → OP2

k
→ i∗OX → 0, regardless of

singularities. The associated long exact cohomology sequence

H1(P2
k,OP2

k
) // H1(P2

k, i∗OX) // H2(P2
k,OP2

k
(−3)) // H2(P2

k,OP2
k
)

0 H1(X,OX)

o

k

o

0

shows that pa(X) = h1(X,OX) = 1.

Aliter: By earlier computations each curve has normalization X̃ ∼= P1
k and precisely

one singular point P . Show that dimk(π∗OX̃/OX)P = 1 by an explicit local
calculation and use (a). The local calculation amounts to the fact that

dimk(k[t]/k[t2, t2(1 + t)]) = dimk(k[t]/k[t2, t3]) = 1.
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3. (Hilbert polynomial of a coherent sheaf ) Let X be a projective scheme over a field
k with a very ample invertible sheaf L and an arbitrary coherent sheaf F . Prove:

(a) There is a unique polynomial PF ∈ Q[T ] such that χ(X,F ⊗L⊗m) = PF(m)
for all m ∈ Z.

(b) This polynomial can be written uniquely as PF(T ) =
∑′

n an
(
T
n

)
with an ∈ Z.

*(c) If F 6= 0, the degree of PF is equal to the dimension of the support of F and
the highest coefficient of PF is positive.

(d) If X is a smooth connected curve and k is algebraically closed, the highest
coefficient of POX

is deg(L).

*(e) Repeat the same with an arbitrary invertible sheaf L, assuming only in (c)
that L is ample.

Solution: First note that for any field extension L/k and the base change mor-
phism π : XL → X, we have χ(X,F⊗L⊗m) = χ(XL, π

∗F⊗ (π∗L)⊗m). In all parts
of the exercise we may thus assume that k is algebraically closed.

The uniqueness in (a) and (b) is a direct consequence of the fact that a univariate
polynomial is determined by its values at any infinite set of points.

Recall from §5.6 that there is a unique smallest closed subscheme Y with embed-
ding i : Y ↪→ X such that F ∼→ i∗i

∗F , called the scheme-theoretic support of F .
For every m ∈ Z we then have χ(X,F ⊗ L⊗m) = χ(Y, i∗F ⊗ (i∗L)⊗m). Thus we
may reduce ourselves to the case that Y = X.

We then do induction on d := dimX. If X is finite, we have L ∼= OX and hence
H0(X,F ⊗ L⊗m) ∼= Γ(X,F) and all other cohomology groups are zero. Thus
χ(X,F ⊗ L⊗m) is an integer that is independent of m and > 0 if F 6= 0; proving
(a) through (c) in this case.

If d > 0, let i : X ↪→ PNk be a closed embedding with i∗O(1) ∼= L. Since k is
algebraically closed, there exists a hyperplane L ⊂ PNk containing none of the
irreducible components of i(X). The linear form defining L yields a section ` ∈
L(X) which generates L over an open dense subset U ⊂ X. Define coherent
sheaves F ′, F ′′, and F̄ on X by the exact sequences

0 // F ′ // F ( )⊗` //

''
F ⊗ L // F ′′ // 0.

F̄
55

))0

77

0

After tensoring with L⊗m the additivity of the Euler characteristic in short exact
sequences shows that

χ(X,F ⊗ L⊗m+1)− χ(X,F ⊗ L⊗m) = χ(X,F ′′ ⊗ L⊗m)− χ(X,F ′ ⊗ L⊗m).
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Also F ′ and F ′′ vanish on U , so their scheme-theoretic support has dimension
6 d − 1; so by the induction hypothesis the right hand side is a polynomial of
degree 6 d−1 in m. Write it in the form

∑d−1
n=0 an

(
m
n

)
. Since

(
m
n

)
=
(
m+1
n+1

)
−
(
m
n+1

)
,

it follows that

χ(X,F ⊗ L⊗m+1)−
d−1∑
n=0

an
(
m+1
n+1

)
= χ(X,F ⊗ L⊗m)−

d−1∑
n=0

an
(
m
n+1

)
.

This value is therefore independent of m, and calling it b we deduce that

(∗) χ(X,F ⊗ L⊗m) =
d∑

n=1

an−1
(
m
n

)
+ b

for all m. This proves both (a) and (b).

To do the induction step for (c) we claim that we can choose ` such that F ′ = 0.
This involves associated primes for modules, or in more down to earth terms: Cover
X by finitely many open affines SpecAi and suppose that the F|SpecAi

= M̃i. Then
Mi is a finitely generated Ai-module; hence there exists a sequence of submodules
0 = Mi,0 ⊂ Mi,1 ⊂ . . . ⊂ Mi,ri such that each Mi,j/Mi,j−1 ∼= Ai/ai,j for some ideal
ai,j. Each associated prime of ai,j corresponds to an irreducible subset of SpecAi,
whose closure is an irreducible subset of X. Let S denote the set of all irreducible
closed subsets of X obtained in this way for all i and j. If the hyperplane L chosen
above does not contain any of the irreducible subsets in S, multiplication by ` is
injective on each Ai/ai,j and hence on each Mi; from which one can deduce that
F ′ = 0. (Compare the discussion following [Vakil, Exercise 18.6.A].)

By contrast, recall that the support of F is X. Thus the support of F ′′ is X ∩ L.
Also we have d = dimX > 0. Moreover L meets every irreducible component of X
of dimension d and the intersection has dimension d− 1 by Krull’s principal ideal
theorem. Thus the support of F ′′ has dimension d−1. By the induction hypothesis
we thus have χ(X,F ′′⊗L⊗m) =

∑d−1
n=0 an

(
m
n

)
with ad−1 > 0. The formula (∗) above

then shows that χ(X,F ⊗L⊗m) =
∑d

n=1 an−1
(
m
n

)
+ b with highest coefficient > 0,

as desired.

In the situation of (d) observe that, with the definition of deg(L) from the course,
by Riemann-Roch we have

χ(X,L⊗m) = 1− g + deg(L⊗m) = 1− g + deg(L) ·m.

Thus POX
(T ) = 1− g + deg(L) · T , which implies (e).

For (e) consider an arbitrary invertible sheaf L. Choose an auxiliary very ample
invertible sheaf L1 such that L2 := L ⊗ L1 is also very ample. Show in a similar
fashion that χ(X,F ⊗ L⊗m1

1 ⊗ L⊗m2
2 ) is a polynomial of total degree 6 dim(X)

in (m1,m2). The special case (m1,m2) = (−m,m) then yields everything except
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the positivity (c). For that assume that L is ample and choose n > 0 such that
L⊗n is very ample. Then the polynomial for L⊗n in place of L is obtained from
that for L by substituting nT for T . This leaves the sign of the highest coefficient
unchanged.

4. Let k be a field. Show that for any f ∈ k((t))× and any n ∈ Z we have

rest(f
ndf) =

{
ordt(f) if n = −1,

0 otherwise.

Solution: If ordt(f) = 0, then ordt(f
n df
dt

) > 0 for all n; hence rest(f
ndf) = 0.

If ordt(f) > 0, the differential fndf = fn df
dt
dt arises by the substitution s = f(t)

from the differential snds. By Proposition 2 of §7.3 of the course it follows that

rest(f
ndf) = ress

(
trk((t))/k((s))(s

nds)
)

= ress
(
ordt(f) · snds

)
= ordt(f) · δn,−1.

If ordt(f) < 0, write f = g−1; then the differential fndf = g−ndg−1 = −g−n−2dg
arises by the substitution s = g(t) from the differential −s−n−2ds. By Proposition
2 of §7.3 of the course it follows that

rest(f
ndf) = ress

(
trk((t))/k((s))(−s−n−2ds)

)
= ress

(
ordt(g) · (−s−n−2ds)

)
= − ordt(g) · δ−n−2,−1 = ordt(f) · δn,−1.

5. Let k be an algebraically closed field of characteristic 6= 2. Let X be the connected
smooth projective curve over k with the affine equation y2 = f(x) for a separable
polynomial f(x) ∈ k[x] of degree 3. Denote the function field of X by K.

(a) Show that Γ(X,ΩX/k) = k · dx
y

.

(b) Verify the residue theorem for the rational differentials dx, dx
x

, x dx
y
∈ ΩK/k

by explicitly computing all residues.

Solution: Write f(x) = (x − e1)(x − e2)(x − e3) for ei ∈ k distinct. By the
jacobian criterion the affine curve U := Spec k[X, Y ]/(Y 2 − f(X)) is non-singular.
Thus U is an affine open chart in X, where x, y are the residue classes of X, Y .
The closure of U under the standard embedding U ↪→ A2

k ↪→ P2
k is given by the

homogeneous equation Y 2Z = (X − e1Z)(X − e2Z)(X − e3Z), which again by the
jacobian criterion is non-singular and hence isomorphic to X. From this equation
we see that X rU consists of the single point in projective coordinates (0 : 1 : 0),
which we denote simply as ∞̃ ∈ X. A local equation for X near ∞̃ is obtained
by substituting x = s−1 and y = ts−2, resulting in the equation t2 = g(s) with
g(s) := s(1 − e1s)(1 − e2s)(1 − e3s), where ∞̃ has the coordinates (s, t) = (0, 0).
Also, the function x defines a separable morphism π : X → P1

k of degree 2 with
π(∞̃) = ∞. This has ramification degree 2 at the points Pi := (ei, 0) ∈ |X| and
at ∞̃, and 1 elsewhere.
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Next observe that the equation y2 = f(x) implies that 2y dy = f ′(x) dx in ΩK/k,

where f ′ := df
dx

. Consider any point P = (ξ, η) ∈ |X| r {∞̃}. In the case η 6= 0
we have 2η 6= 0 and x − ξ is a local uniformizer and hence ΩX/k,P = OX,P · dx.
By contrast, in the case η = 0 we have f(ξ) = 0 and hence f ′(ξ) 6= 0, so y is
a local uniformizer and ΩX/k,P = OX,P · dy. At ∞̃ observe that t2 = g(s) with
ords(g) = 1; thus s is equal to t2 times a unit at ∞̃; hence t = y/x2 is a local
uniformizer at ∞̃ and ΩX/k,∞̃ = OX,∞̃ · dt.
(a) Since x and y are regular functions on U , the differential dx

y
∈ ΩK/k is regular

on U except possibly where y = 0. But by the equation 2y dy = f ′(x) dx in ΩK/k

it is also equal to 2dy
f ′(x)

. In this form it extends to a regular differential at all

points with f ′(x) 6= 0; hence in particular to those with y = 0. At ∞̃ observe that
dx
y

= ds−1

ts−2 = −ds
t

. But the equation t2 = g(s) implies that 2t dt = g′(s) ds with

g′(0) 6= 0; hence −ds
t

= − 2dt
g′(s)

is regular at ∞̃. Together this shows that dx
y

defines

an element of Γ(X,ΩX/k).

We have seen in the course that every plane cubic curve has ΩX/k
∼= OX and

hence dimk Γ(X,ΩX/k) = 1. It follows that the non-zero global section dx
y

generates

Γ(X,ΩX/k). (Aliter: With the same local computations show that dx
y

is a generator

of ΩX/k everywhere. Thus Γ(X,ΩX/k) = Γ(X,OX · dxy ) = Γ(X,OX) · dx
y

= k · dx
y

.)

(b) To simplify the computation of the residue at one of the points P = (ei, 0) or ∞̃
where π : X → P1

k is ramified, we use the equation resP (ω) = resπ(P )(trK/k(x)(ω))
proved in the course, where resπ(P ) denotes the residue taken on P1

k.

i. The differential dx is regular on U and hence resP (dx) = 0 there. At ∞̃ we
use the trace. Since dx comes from a differential on P1

k, we get res∞̃(dx) =
res∞(trK/k(x)(dx)) = res∞(2 dx). But the substitution x = s−1 and the quo-
tient rule show that dx = ds−1 = −ds

s2
and hence res∞(2 dx) = ress(−2ds

s2
) = 0.

Thus resP (dx) = 0 for all P ∈ |X|; and in particular
∑

P∈|X| resP (dx) = 0.

ii. The differential dx
x

is regular on U except where x = 0; hence its residues are
zero there. The situation at x = 0 depends: If some ei = 0, we have only
the point P = (0, 0) to consider and the morphism π is ramified there, and
we get resP (dx

x
) = res0(trK/k(x)(

dx
x

)) = resx(2
dx
x

) = 2. Otherwise there are
two points (0,±η) to consider with η 6= 0, and x is a uniformizer at each of
them, so we directly get resP (dx

x
) = 1 at these two points. At infinity we can

again use the trace and the substitution x = s−1, obtaining dx
x

= −ds
s

and
res∞̃(dx

x
) = res∞(trK/k(x)(

dx
x

)) = res∞(2dx
x

) = ress(−2ds
s

) = −2. The sum of
all residues is therefore 2 + (−2) = 0, respectively 1 + 1 + (−2) = 0.

iii. Since the function x and the differential dx
y

are both regular on U , so is the

differential x dx
y

. Thus its residues are zero there. At ∞̃ we have res∞̃(x dx
y

) =

res∞(trK/k(x)(
x dx
y

)). Since x dx
y2

= x dx
f(x)

comes from a differential on P1
k, we have

trK/k(x)(
x dx
y

) = trK/k(x)(y) · x dx
f(x)

. But the equation y2 = f(x) also implies
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that trK/k(x)(y) = 0. Thus resP (dx) = 0 for all P ∈ |X|; and in particular∑
P∈|X| resP (dx) = 0.

Aliter : To compute the residues at ∞̃ without using the trace we substitute
x = s−1 and y = ts−2 as before, so that dx = −ds

s2
= −2t dt

s2g′(s)
with g′(0) 6= 0 and

the local uniformizer t. The equation t2 = g(s) = s+ O(s2) implies an expansion
s = t2 + . . . as a power series in k[[t2]]. We proceed in increasing order of difficulty:

ii. Here dx
x

= 1
s−1 · −2t dts2g′(s)

= −2t2 dt
sg′(s)t

= −2 · g(s)
sg′(s)

· dt
t
, where g(s)

sg′(s)
is a unit at ∞̃ with

constant term 1. Thus dx
x

= −2 · dt
t

+ (a differential regular at ∞̃); hence the
residue is −2.

iii. Here x dx
y

= s−1

ts−2 · −2t dts2g′(s)
= −2

sg′(s)
·dt has a pole of order 2 at ∞̃. But expanding

−2
sg′(s)

yields a Laurent series in t2; hence the expansion of −2
sg′(s)

· dt does not

contain the term dt
t
; so the residue is 0.

i. Here dx = −2t2 dt
s2g′(s)t

= −2g(s)
s2g′(s)

· dt
t

has a pole of order 3 at ∞̃, so we must calculate

initial parts of Laurent series in order to identify the coefficient of dt
t
. Write

g(s) = s− es2 +O(s3) with e ∈ k. Then the equation t2 = g(s) implies that
s = t2 + es2 +O(s3) = t2 + et4 +O(t6). Therefore

g(s)

s2g′(s)
=

s− es2 +O(s3)

s2(1− 2es+O(s2))
=

1 + es+O(s2)

s
=

1 + et2 +O(t4)

t2 + et4 +O(t6)
=

1 +O(t4)

t2
.

Thus dx = −2 · 1+O(t4)
t2
· dt
t

= −2 · dt
t3

+(a differential regular at ∞̃); hence the
residue is 0.

If some ei = 0, we proceed in the same way to compute the residue at P = (0, 0):

Here dx
x

= 2y dy
f ′(x)x

= 2y2 dy
f ′(x)xy

= 2 · f(x)
f ′(x)x

· dy
y

and f(x) = ax+ O(x2) for some a ∈ k×;

hence f(x)
f ′(x)x

is a unit at P with constant term 1. Thus dx
x

= 2 · dy
y

+(a differential

regular at P ); hence the residue is 2.
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