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EULER CHARACTERISTIC, RIEMANN-ROCH, RESIDUES

1. (Riemann-Roch for locally free sheaves) Let X be a connected smooth projective
curve of genus g over an algebraically closed field k.

(a) For every non-zero locally free sheaf F there exists an invertible sheaf £ C F
such that F/L is locally free.

(b) For any locally free sheaf F of rank r over X define deg(F) := deg(\'F)
and prove that
XX, F) = r-(1—g)+ deg(F).

Solution: (a) Let U C X be a nonempty open subscheme such that Fly is
free and let j: U — X be the canonical embedding. Since X is integral, the
adjunction map F — j,7*F is injective; we identify F with its image. Choose a
direct summand M C j7*F which is free of rank 1. Since j, is left exact, we have
J«M C jug*F. We claim that £ := F N j,M has the desired property.

For this recall that the local rings of X are principal ideal domains, and that a
finitely generated module over a principal ideal domain is free if and only if it is
torsion free. Since L is a subsheaf of F, it is finitely generated and torsion free,
and we thus deduce that L is locally free. Moreover by construction L]y = M,
and so £ has rank 1. Also by construction and the exactness of j, we have

FIL = FHFNLM) < " F/iM = j.(*F/M).

Being the j, of a free sheaf the right hand side is torsion free; hence F /L is torsion
free. But F/L is also a quotient of F; hence finitely generated; hence locally free.

(b) We proceed by induction on r. If r = 0, the sheaf A" F = Ox has degree 0 and
both sides are 0. If r = 1, the statement is version 1 of the Riemann-Roch theorem
from the course. Suppose r > 1. Let £ be as in part (a) and set £ := F/L. Then
we have an exact sequence 0 — L — F — & — 0. Since rank is additive, we see
that £ has rank r — 1. By the induction hypothesis, we have

X(X, F) = x(X, L) + x(X, &) = (1 — g) +deg(L) + (r — 1)(1 — g) + deg(€)
=7r(1—g)+ deg(L) + deg(E).

Since the exact sequence above induces an isomorphism A" F = /\7"71 E® L, we
deduce that deg(L) + deg(€) = deg(F), which yields the desired result.



2. For an arbitrary integral projective curve X over an algebraically closed field £,
the arithmetic genus of X is defined as p,(Y) := h'(X,Ox). Let 7: X — X be
the normalization of X.

(a) Show that p,(X) = pa(X) + S pex lengthy, . (m.0%/Ox)p.
(b) Deduce that p,(X) = 0 if and only if X is nonsingular of genus 0.

(c) Determine p,(X) for the nodal cubic curve X := V(C(C — B)A — B3) C P2
and the cuspidal cubic curve X := V(B?C — A%) C Pi.

Solution: (a) The morphism 7 is birational, and it is finite because X is noethe-
rian. Thus 7,0y is a coherent sheaf of Ox-modules and the homomorphism
™: Ox — w0y is an isomorphism except at the finitely many closed points
where X is singular. Since X is integral, it follows that 7” is injective everywhere.
We will study the long exact cohomology sequence associated to the short exact
sequence 0 - Ox — 1,03 — (m.0%)/Ox — 0.

Since 7 is affine, we have natural isomorphism HY(X,0z) = HY(X,7,0%) for
eachi. As X and X are integral projective, we have H°(X,Ox) = H'(X,03) = k.
Since m,O%/Ox is a coherent sheaf with finite support, the group of its global sec-
tions is the direct sum of its stalks and its H' vanishes. The long exact cohomology
sequence thus reads

0k —s

P (7,05 /Ox)p— H'(X,Ox) — H'(X,05) —0.
Pex

The homomorphism (*) must therefore vanish, and taking dimensions yields the
desired formula in (a).

(b) Every term on the right hand side of the equation in (a) is non-negative. Thus
pa(X) = 0 if and only if p,(X) = 0 and Ox = 7.Ox. The latter is equivalent to
X = X (for instance because it means that each stalk Ox p is integrally closed).

Thus p,(X) = 0 if and only if X is non-singular of genus 0.

(c) Each curve has a closed embedding i: X < P2 as a curve of degree 3; so we
have a short exact sequence 0 — (’)Pz(—B) — O]P?% — 1,Ox — 0, regardless of
singularities. The associated long exact cohomology sequence

H1<Pi>OPi>_>H1(]P)i|>|i*OX)_)H2<P%7O]P’i(_3)>_>H2(]Piaoﬂ’>§)
| ? | |

0 H'(X,Ox) k 0
shows that p,(X) = h!'(X,0x) = 1.

Aliter: By earlier computations each curve has normalization X & P} and precisely
one singular point P. Show that dimy(7.O%/Ox)p = 1 by an explicit local
calculation and use (a). The local calculation amounts to the fact that

dimyg (k[t]/k[t?, 2(1 4+ 1)]) = dimg(k[t]/Ek[t*, %)) = 1.
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3. (Hilbert polynomial of a coherent sheaf) Let X be a projective scheme over a field
k with a very ample invertible sheaf £ and an arbitrary coherent sheaf F. Prove:

(a) There is a unique polynomial Pr € Q[T] such that x(X,F & L®™) = Pr(m)
for all m € Z.

(b) This polynomial can be written uniquely as Px(T) = > a, (Z) with a,, € Z.

*(c) If F # 0, the degree of Pr is equal to the dimension of the support of F and
the highest coefficient of Pz is positive.

(d) If X is a smooth connected curve and k is algebraically closed, the highest
coefficient of Pp, is deg(L).

*(e) Repeat the same with an arbitrary invertible sheaf £, assuming only in (c)
that £ is ample.

Solution: First note that for any field extension L/k and the base change mor-
phism 7: X, — X, we have x(X, F® LZ™) = x(X, m*F @ (7*L£)®™). In all parts
of the exercise we may thus assume that k is algebraically closed.

The uniqueness in (a) and (b) is a direct consequence of the fact that a univariate
polynomial is determined by its values at any infinite set of points.

Recall from §5.6 that there is a unique smallest closed subscheme Y with embed-
ding i : Y < X such that F = 4,i*F, called the scheme-theoretic support of F.
For every m € Z we then have x(X,F ® L) = x(Y,#*F @ (:*£)®™). Thus we
may reduce ourselves to the case that ¥ = X.

We then do induction on d := dim X. If X is finite, we have £ = Oy and hence
HY(X,F @ L£L®™) = I'(X,F) and all other cohomology groups are zero. Thus
X(X, F ® LP™) is an integer that is independent of m and > 0 if F # 0; proving
(a) through (c) in this case.

If d > 0, let i: X < P& be a closed embedding with *O(1) = L. Since k is
algebraically closed, there exists a hyperplane L C P& containing none of the
irreducible components of i(X). The linear form defining L yields a section ¢ €
L(X) which generates £ over an open dense subset U C X. Define coherent
sheaves F/, F”, and F on X by the exact sequences

(et
f
0/ \0

After tensoring with £®™ the additivity of the Euler characteristic in short exact
sequences shows that

0—=F' F&L—sF" —0.

XX F @ L) = x(X, F@ L") = x(X, F'® L) = x(X, F' @ L)



Also F' and F” vanish on U, so their scheme-theoretic support has dimension
< d — 1; so by the induction hypothesis the right hand side is a polynomial of
degree < d—1in m. Write it in the form Zi;%) a, (™). Since (™) = (’:Ll) — (n’j:l),
it follows that

U

-1 -1

X<X7F®£®m+1)_ an(?jill) = X(X>f®£®m)_ an(,ﬁfl)-

U

i
o
i
o

This value is therefore independent of m, and calling it b we deduce that

(%) XX, FRL) = > an_(7)+b

n=1

for all m. This proves both (a) and (b).

To do the induction step for (¢) we claim that we can choose ¢ such that 7' = 0.
This involves associated primes for modules, or in more down to earth terms: Cover
X by finitely many open affines Spec A; and suppose that the Flspec 4, = M;. Then
M; is a finitely generated A;-module; hence there exists a sequence of submodules
0= Mo C M;; C...C M,,, such that each M, ;/M; ;1 = A;/a;; for some ideal
a; ;. Bach associated prime of a; ; corresponds to an irreducible subset of Spec A;,
whose closure is an irreducible subset of X. Let S denote the set of all irreducible
closed subsets of X obtained in this way for all < and 5. If the hyperplane L chosen
above does not contain any of the irreducible subsets in &, multiplication by ¢ is
injective on each A;/a;; and hence on each M;; from which one can deduce that
F' = 0. (Compare the discussion following [Vakil, Exercise 18.6.A].)

By contrast, recall that the support of F is X. Thus the support of F” is X N L.
Also we have d = dim X > 0. Moreover L meets every irreducible component of X
of dimension d and the intersection has dimension d — 1 by Krull’s principal ideal
theorem. Thus the support of F” has dimension d—1. By the induction hypothesis
we thus have x (X, F/®@L®™) = 39" a,, (™) with ag—y > 0. The formula (x) above
then shows that x(X, F ® L) =3¢ a, (™) + b with highest coefficient > 0,
as desired.

In the situation of (d) observe that, with the definition of deg(L) from the course,
by Riemann-Roch we have

X(X,L9™) = 1—g+deg(L) = 1—g+deg(L) m.

Thus Po,(T) =1— g +deg(L) - T, which implies (e).

For (e) consider an arbitrary invertible sheaf £. Choose an auxiliary very ample
invertible sheaf £, such that £; := £L ® L, is also very ample. Show in a similar
fashion that y(X,F ® L™ @ L£L$™?) is a polynomial of total degree < dim(X)
in (mq,ms). The special case (my,my) = (—m,m) then yields everything except
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the positivity (c). For that assume that £ is ample and choose n > 0 such that
L2 is very ample. Then the polynomial for £%" in place of £ is obtained from
that for £ by substituting nT" for T'. This leaves the sign of the highest coefficient
unchanged.

. Let k be a field. Show that for any f € k((¢))* and any n € Z we have

Ordt(f) lf n = _17
nd —
res; (f"df) { 0 otherwise.
Solution: If ord,(f) = 0, then Ol"dt(fnzll_{) > 0 for all n; hence res,(f"df) = 0.

If ord;(f) > 0, the differential f™df = f”%dt arises by the substitution s = f(t)
from the differential s"ds. By Proposition 2 of §7.3 of the course it follows that

res,(f"df) = res, (trk((t))/k((s))(s”ds)) = res, (ordt(f) . s"ds) = ordy(f) - 6n—1-

If ord;(f) < 0, write f = g '; then the differential f"df = g "dg~! = —¢g " "2dg
arises by the substitution s = g(t) from the differential —s~"~2ds. By Proposition
2 of §7.3 of the course it follows that

res,(fmdf) = res, (i ks (—s " 2ds)) = res,(ordy(g) - (—s™"2ds))
= _Ordt(g> : 5—n—2,—1 = Ol"dt(f) : 5n,—1-

. Let k be an algebraically closed field of characteristic # 2. Let X be the connected
smooth projective curve over k with the affine equation y* = f(z) for a separable
polynomial f(x) € k[z] of degree 3. Denote the function field of X by K.

(a) Show that I'(X,Qx/,) =k - %””.

(b) Verify the residue theorem for the rational differentials dz, %, % € Qi

by explicitly computing all residues.

Solution: Write f(z) = (z — e1)(x — e2)(z — e3) for e; € k distinct. By the
jacobian criterion the affine curve U := Spec k[X,Y]/(Y? — f(X)) is non-singular.
Thus U is an affine open chart in X, where x,y are the residue classes of X,Y.
The closure of U under the standard embedding U < A? < P? is given by the
homogeneous equation Y2Z = (X — e, Z)(X — e3Z)(X — e3Z), which again by the
jacobian criterion is non-singular and hence isomorphic to X. From this equation
we see that X \ U consists of the single point in projective coordinates (0 : 1 : 0),
which we denote simply as o0 € X. A local equation for X near oo is obtained
by substituting r = s7! and y = ¢s72, resulting in the equation t* = g(s) with
g(s) == s(1 —e15)(1 — eas)(1 — e3s), where 0o has the coordinates (s,t) = (0,0).
Also, the function = defines a separable morphism 7: X — P} of degree 2 with
7(00) = oo. This has ramification degree 2 at the points P; := (e;,0) € | X| and
at 00, and 1 elsewhere.



Next observe that the equation y*> = f(z) implies that 2y dy = f'(x) dx in Qg /s,
where f':= % Consider any point P = (£,1) € |X| \ {cc}. In the case  # 0
we have 2n # 0 and = — § is a local uniformizer and hence Qx/, p = Ox p - du.
By contrast, in the case n = 0 we have f({) = 0 and hence f'(£) # 0, so y is
a local uniformizer and Qy/, p = Ox p - dy. At o0 observe that t* = g(s) with
ords(g) = 1; thus s is equal to ¢* times a unit at o0; hence t = y/x? is a local
uniformizer at oo and Qx/rx = Oxx - dt.

(a) Since  and y are regular functions on U, the differential < € Kk is regular

on U except possibly where y = 0. But by the equation 2y dy = f'(z) dv in Qg
2dy_
f'(z)” —
points with f’(x) # 0; hence in particular to those with y = 0. At 0o observe that
do _ ds ' — _ds Byt the equation t2 = g(s) implies that 2tdt = ¢'(s)ds with

y ts—2 t

g'(0) # 0; hence — ds = g2?t) is regular at co. Together this shows that dy“” defines

an element of I'( X, QX/k).

it is also equal to In this form it extends to a regular differential at all

We have seen in the course that every plane cubic curve has QX/k =~ Ox and
hence dimy, I'(X, Q) = 1. It follows that the non-zero global section 42 generates

I'(X,Qx/r). (Aliter: With the same local computations show that 4 is a generator
of Qx/ everywhere. Thus I'(X, Qx/) = I'(X, Ox - y) I'(X, OX) da: — . dgc )

(b) To simplify the computation of the residue at one of the points P = (ei, 0) or 0o
where 7: X — P} is ramified, we use the equation resp(w) = res,(p)(trx /) (w))
proved in the course, where res,p) denotes the residue taken on P;.

. The differential dz is regular on U and hence resp(dx) = 0 there. At 0o we
use the trace. Since dr comes from a differential on P}, we get resg(dz) =
r€So0 (1T i /i(2) (dT)) = Teseo (2 d). But the substitution = s~! and the quo-
tient rule show that dz = ds™' = —9% and hence reso (2 dz) = res,(—2%) = 0.
Thus resp(dx) = 0 for all P € |X\ and in particular 3, resp(dz) = 0.

ii. The differential % is regular on U except where & = 0; hence its residues are
zero there. The 81tuat10n at x = 0 depends: If some e; = 0, we have only
the point P = (0,0) to consider and the morphism 7 is ramified there, and
we get resp(%) = reso(trppm) (%)) = res,(2%) = 2. Otherwise there are
two points (0,4n) to consider with  # 0, and z is a uniformizer at each of
them, so we directly get res P(d$> = 1 at these two points. At infinity we can

again use the trace and the substitution z = s~!, obtaining df = —% and
resss (L) = rese (trx k) () = rese(24) = res,(—2%) = —2. The sum of

all residues is therefore 2 + (—2) = 0, respectively 1 + 1+ (—2) = 0.

ldx

iii. Since the function x and the differentia &, are both regular on U, so is the

differential ””yﬂ Thus its residues are zero there. At o0 we have ress (222 gm) =

reso (0 (222)). Since 2 = 2ds
xdr

trK/k(x)(%) = trK/k(x)(y) Ty~ But the equation y*> = f(z) also implies

comes from a differential on IP’ , we have



that trx k) (y) = 0. Thus resp(dz) = 0 for all P € |X]|; and in particular

Aliter: To compute the residues at oo without using the trace we substitute
z=s"and y = ts~? as before, so that dv = —% = 5 zt(‘“ with ¢'(0) # 0 and
the local uniformizer ¢. The equation t*> = g(s) = s + O(s®) implies an expansion

s =t?+... as a power series in k[[t?]]. We proceed in increasing order of difficulty:

g(s)

ii. Here & = L . Z2tdt  —20%dt o 9(s)  dt where 22 is a unit at o0 with
z s—h s2g'(s) sg'(s)t sg'(s) t g'(s)
constant term 1. Thus df =2 ‘1 + (a differential regular at 00); hence the
residue is —2.
iii. Here ”Cdx = ;:12 : s_?,t(f) = o (S -dt has a pole of order 2 at 0. But expanding
( ) ylelds a Laurent series in ¢?; hence the expansion of == - dt does not

dt

contaln the term %; so the residue is 0.

2t2dt __ —29(s)
g'(s)t — s%g'(s
initial parts of Laurent series in order to identify the coefficient of %. Write
g(s) = s —es? + O(s®) with e € k. Then the equation t* = g(s) implies that
s=1t*+es? + O(s?) = t* + et + O(t9). Therefore

i. Here dv = 3 y % has a pole of order 3 at 0o, so we must calculate

g(s)  s—es’+0(s°)  l4+es+0(s*) 1+et?+0@")  14+0(")
s2g'(s)  s2(1 —2es + O(s?)) s 2 4ett+0O(t5) 2
Thus dz = -2 - %2(#) -4t — —2. 44 (a differential regular at 6o); hence the

residue is 0.

If some e; = 0, we proceed in the same way to compute the residue at P = (0,0):

Here £ = ]?,Zza‘f)yx = ]?,léz)‘?y =2 f{((;c))x : ‘Z—y and f(r) = ax + O(x?) for some a € k*;
hence ff((f))x is a unit at P with constant term 1. Thus %‘” =2 %—i—(a differential

regular at P); hence the residue is 2.



