D-MATH
Prof. Richard Pink

Algebraic Geometry II
HS 2017

Solutions 13

Riemann-Roch, Embeddings in Projective Space

1. Let k be an arbitrary field with algebraic closure \bar{k}. Let X be a geometrically integral projective curve over k with $h^{1}\left(X, \mathcal{O}_{X}\right)=0$. Show:
(a) The base change $X_{\bar{k}}$ is isomorphic to $\mathbb{P}_{\bar{k}}^{1}$.
(b) The curve X is isomorphic to a plane curve of degree 2 .
(c) We have $X \cong \mathbb{P}_{k}^{1}$ if and only if $X(k) \neq \varnothing$.

Solution: (a) We proved in the course that $H^{1}\left(X_{\bar{k}}, \mathcal{O}_{X_{\bar{k}}}\right) \cong H^{1}\left(X, \mathcal{O}_{X}\right) \otimes_{k} \bar{k}$ (flat base change). This implies that $X_{\bar{k}}$ has genus 0 , and is hence isomorphic to $\mathbb{P}_{\bar{k}}^{1}$.
(b) By flat base change we also have $H^{0}\left(X_{\bar{k}}, \Omega_{X_{\bar{k}}}^{\vee}\right) \cong H^{0}\left(X, \Omega_{X}^{\vee}\right) \otimes_{k} \bar{k}$. We showed in the course that $\Omega_{X_{\bar{k}}}^{\vee}$ is very ample and determines the anticanonical embedding $X_{\bar{k}} \hookrightarrow \mathbb{P}_{\bar{k}}^{2}$ whose image is a plane curve of degree 2. By choosing global sections of $\Omega_{X_{\bar{k}}}^{\vee}$ that are already defined over k, this is obtained by base change from a morphism $X \rightarrow \mathbb{P}_{k}^{2}$. This morphism is non-constant and hence finite. We conclude that it is a closed embedding using the lemma below (which by the way also holds without the assumption "affine"). Since the images of $X_{\bar{k}}$ and X are defined by the same polynomial, see that X also has degree 2 .

Lemma: An affine morphism $X \rightarrow Y$ of schemes over k is a closed embedding, resp. an isomorphism, if and only if the base change $X_{\bar{k}} \rightarrow Y_{\bar{k}}$ has that property.

Proof. The problem is local on Y, so it reduces to the case that Y is affine. Then $Y=\operatorname{Spec} B$ and $X=\operatorname{Spec} A$ for some B-algebra A, and correspondingly $Y_{\bar{k}}=\operatorname{Spec} B \otimes_{k} \bar{k}$ and $X_{\bar{k}}=\operatorname{Spec} A \otimes_{k} \bar{k}$. Now $X \rightarrow Y$ is a closed embedding, resp. an isomorphism, if and only if $B \rightarrow A$ is surjective, resp. an isomorphism; and the analogue holds for $X_{\bar{k}} \rightarrow Y_{\bar{k}}$. But by mere linear algebra, using only that we have a linear map of k-vector spaces, we know that $B \rightarrow A$ is surjective, resp. an isomorphism, if and only if $B \otimes_{k} \bar{k} \rightarrow A \otimes_{k} \bar{k}$ has that property.
(c) If $X \cong \mathbb{P}_{k}^{1}$, then clearly $X(k) \neq \varnothing$ (take for instance the point ($0: 1$) in standard homogeneous coordinates). Conversely, suppose that $X(k)$ contains a point P. Then $\mathcal{O}_{X}(P)$ is an invertible sheaf of degree 1 on X, whose pullback to $X_{\bar{k}} \cong \mathbb{P}_{\bar{k}}^{1}$ still has degree 1. Thus $h^{0}\left(X, \mathcal{O}_{X}(P)\right)=h^{0}\left(X_{\bar{k}}, \mathcal{O}_{X_{\bar{k}}}(P)\right)=2$; hence $H^{0}\left(X, \mathcal{O}_{X}(P)\right)$ contains a non-constant function f with a simple pole at P and no other pole. The associated embedding of function fields $k(f) \hookrightarrow K(X)$ then
corresponds to a finite morphism $X \rightarrow \mathbb{P}_{k}^{1}$. Over \bar{k} we have proved in the course that the morphism associated to such an f is an isomorphism. By the lemma above we deduce that $X \rightarrow \mathbb{P}_{k}^{1}$ itself is an isomorphism, as desired.

Aliter: By part (b), we may identify X with $V(f) \subset \mathbb{P}_{k}^{2}:=\operatorname{Proj}(k[x, y, z])$ for a some non-zero $f \in k[x, y, z]$ homogeneous of degree 2. After a suitable change of coordinates, we may assume that $P:=(1: 0: 0) \in X(k)$. The polynomial then has the form

$$
f=x\left(a_{12} y+a_{13} z\right)+\left(a_{22} y^{2}+a_{23} y z+a_{33} z^{2}\right) .
$$

Here a_{12} and a_{13} cannot both be 0 , because otherwise $X_{\bar{k}}$ would be singular at P. After possibly interchanging y and z we may assume that $a_{13} \neq 0$. Then, after applying the linear substitution $z \rightsquigarrow a_{12} y+a_{13} z$ while keeping the other variables fixed, we may suppose that

$$
f=x z+\left(a_{22} y^{2}+a_{23} y z+a_{33} z^{2}\right)=\left(x+a_{23} y+a_{33} z\right) z+a_{22} y^{2} .
$$

Thereafter the substitution $x \rightsquigarrow x+a_{23} y+a_{33} z$ with the other variables fixed brings the polynomial into the form

$$
f=x z+a_{22} y^{2} .
$$

Here a_{22} must be non-zero, because f is irreducible and hence not a multiple of z. The final substitution $a_{22} z \rightsquigarrow z$ thus brings the equation into the form $x z-y^{2}$. But we already know that $\bar{V}\left(x z-y^{2}\right) \subset \mathbb{P}_{k}^{2}$ is the image of the 2-uple embedding $\mathbb{P}_{k}^{1} \hookrightarrow \mathbb{P}_{k}^{2}$. Thus $X \cong \mathbb{P}_{k}^{1}$, as desired.
*2. Let X be an irreducible smooth projective curve of genus $g=1$ over an algebraically closed field k. Show that there exists a locally free sheaf of rank 2 on X which is not a direct sum of invertible sheaves.
(For instance let i_{P} denote the embedding of a closed point P into X, let \mathcal{E} be the kernel of a homomorphism $\mathcal{O}_{X}(P) \oplus \mathcal{O}_{X} \rightarrow i_{P *} k$ which is non-zero on each direct summand, and show that the resulting short exact sequence

$$
\begin{equation*}
0 \longrightarrow \mathcal{O}_{X} \xrightarrow{\binom{1}{0}} \mathcal{E} \xrightarrow{(0,1)} \mathcal{O}_{X} \longrightarrow 0 \tag{*}
\end{equation*}
$$

does not split.)
Solution: Define \mathcal{E} as described. Then the projection to the second factor $(0,1)$: $\mathcal{E} \rightarrow \mathcal{O}_{X}$ is surjective and its kernel is the subsheaf $\mathcal{E} \cap\left(\mathcal{O}_{X}(P) \oplus 0\right)=\mathcal{O}_{X} \oplus 0 ;$ hence the sequence $(*)$ is exact. Also, since X has genus 1, we have $H^{0}\left(\mathcal{O}_{X}(P)\right)=$ $H^{0}\left(\mathcal{O}_{X}\right)=k$ and hence $H^{0}\left(\mathcal{O}_{X}(P) \oplus \mathcal{O}_{X}\right)=H^{0}\left(\mathcal{O}_{X}^{\oplus 2}\right)=k^{\oplus 2}$. Since $\mathcal{E} \cap \mathcal{O}_{X}^{\oplus 2}=$ $\mathcal{O}_{X} \oplus \mathcal{O}_{X}(-P)$ and $H^{0}\left(\mathcal{O}_{X}(-P)\right)=0$, it follows that $H^{0}(\mathcal{E})=H^{0}\left(\mathcal{E} \cap \mathcal{O}_{X}^{\oplus 2}\right)=k \oplus 0$. Taking global sections the sequence $(*)$ yields a left exact sequence

where (a) is an isomorphism and hence (b) is zero. But if the sequence $(*)$ were split, it would yield a short exact sequence of H^{0} groups. Thus the sequence does not split.

Now suppose that $\mathcal{E} \cong \mathcal{L}_{1} \oplus \mathcal{L}_{2}$ is a direct sum of invertible sheaves in an arbitrary way. Then each \mathcal{L}_{i} is either a subsheaf of $\mathcal{O}_{X} \oplus 0$ or the composite homomorphism $\mathcal{L}_{i} \hookrightarrow \mathcal{E} \rightarrow \mathcal{O}_{X}$ is non-zero. In each case \mathcal{L}_{i} is isomorphic to a subsheaf of \mathcal{O}_{X}. In particular $\operatorname{deg}\left(\mathcal{L}_{i}\right) \leqslant \operatorname{deg}\left(\mathcal{O}_{X}\right)=0$. But the exact sequence $(*)$ already implies that $\operatorname{deg}\left(\mathcal{L}_{1}\right)+\operatorname{deg}\left(\mathcal{L}_{2}\right)=\operatorname{deg}(\mathcal{E})=\operatorname{deg}\left(\mathcal{O}_{X}\right)+\operatorname{deg}\left(\mathcal{O}_{X}\right)=0$. Thus we must have $\operatorname{deg}\left(\mathcal{L}_{i}\right)=0$ and hence $\mathcal{L}_{i} \cong \mathcal{O}_{X}$. This implies that $\mathcal{E} \cong \mathcal{O}_{X}^{\oplus 2}$ and hence $H^{0}(\mathcal{E}) \cong H^{0}\left(\mathcal{O}_{X}^{\oplus 2}\right)=k^{\oplus 2}$. But we have seen above that $\operatorname{dim}_{k} H^{0}(\mathcal{E})=1$, yielding a contradiction. Thus \mathcal{E} is a locally free sheaf of rank 2 which is not a direct sum of invertible sheaves.
3. Let X be a smooth, irreducible curve of genus g over an algebraically closed field. Let D be an effective divisor on X. Show that:
(a) $h^{0}\left(X, \mathcal{O}_{X}(D)\right) \leqslant \operatorname{deg} D+1$.
(b) $h^{0}\left(X, \mathcal{O}_{X}(D)\right) \leqslant \operatorname{deg} D$ if and only if $\operatorname{deg}(D) \geqslant 1$ and $g \geqslant 1$.
(c) $h^{0}\left(X, \mathcal{O}_{X}(D)\right) \leqslant \operatorname{deg} D-1$ if $\operatorname{deg}(D) \geqslant 2$ and X is not hyperelliptic.

Solution: We first prove the following general lemma:
Lemma: For any divisor D_{0} and any effective divisor D^{\prime} we have

$$
h^{0}\left(\mathcal{O}_{X}\left(D_{0}+D^{\prime}\right)\right) \leqslant H^{0}\left(\mathcal{O}_{X}\left(D_{0}\right)\right)+\operatorname{deg} D^{\prime} .
$$

Indeed, this is trivial if $D^{\prime}=0$. If $D^{\prime}=P$ for a closed point P, the quotient sheaf $\mathcal{O}_{X}\left(D_{0}+P\right) / \mathcal{O}_{X}\left(D_{0}\right)$ has stalk k at P and is zero elsewhere. Thus we have a left exact sequence $0 \rightarrow H^{0}\left(\mathcal{O}_{X}\left(D_{0}\right)\right) \rightarrow H^{0}\left(\mathcal{O}_{X}\left(D_{0}+P\right)\right) \rightarrow k$ which implies the desired inequality. The general case follows by induction on $\operatorname{deg} D^{\prime}$.
Now let D be any effective divisor. With $D_{0}=0$ and $D^{\prime}=D$ the lemma shows that $h^{0}\left(\mathcal{O}_{X}(D)\right) \leqslant h^{0}\left(\mathcal{O}_{X}\right)+\operatorname{deg} D$. Since $h^{0}\left(\mathcal{O}_{X}\right)=1$, this proves (a).
To prove (b) suppose first that $\operatorname{deg}(D) \geqslant 1$ and $g \geqslant 1$. Write $D=D_{0}+D^{\prime}$ with effective divisors D_{0} and D^{\prime} of respective degrees 1 and $\operatorname{deg} D-1$. Since $g \geqslant 1$, we then have $h^{0}\left(\mathcal{O}_{X}\left(D_{0}\right)\right) \leqslant 1$. The lemma thus shows that $h^{0}\left(\mathcal{O}_{X}(D)\right) \leqslant$ $h^{0}\left(\mathcal{O}_{X}\left(D_{0}\right)\right)+\operatorname{deg} D-1 \leqslant 1+\operatorname{deg} D-1=\operatorname{deg} D$. This proves the "if" part of (b). For the "only if" part suppose first that deg $D=0$. Since D is effective, this means that $D=0$ and hence $h^{0}\left(\mathcal{O}_{X}(D)\right)=h^{0}\left(\mathcal{O}_{X}\right)=1=\operatorname{deg} D+1$. Suppose next that $g=0$, so that without loss of generality $X=\mathbb{P}_{k}^{1}$. Then $\mathcal{O}_{X}(D) \cong \mathcal{O}_{X}(\operatorname{deg} D)$ with $\operatorname{deg} D \geqslant 0$ because D is effective; hence $h^{0}\left(\mathcal{O}_{X}(D)\right)=h^{0}\left(\mathcal{O}_{X}(\operatorname{deg} D)\right)=\operatorname{deg} D+1$. This proves the "only if" part of (b).
For (c) write $D=D_{0}+D^{\prime}$ with effective divisors D_{0} and D^{\prime} of respective degrees 2 and $\operatorname{deg} D-2$. Since X is not hyperelliptic, we then have $h^{0}\left(\mathcal{O}_{X}\left(D_{0}\right)\right) \leqslant 1$. The
lemma thus shows that $h^{0}\left(\mathcal{O}_{X}(D)\right) \leqslant h^{0}\left(\mathcal{O}_{X}\left(D_{0}\right)\right)+\operatorname{deg} D-2 \leqslant 1+\operatorname{deg} D-2=$ $\operatorname{deg} D-1$, as desired.
4. Let X be a curve of genus 2 . Show that a divisor D on X is very ample if and only if $\operatorname{deg} D \geqslant 5$.
Solution: In the lecture we proved that every divisor of degree $\geqslant 2 g+1=5$ is very ample. Conversely suppose that D is very ample. Then X embeds into \mathbb{P}_{k}^{n} for $n:=h^{0}(X, \mathcal{O}(D))-1$. Since X is not rational, we must have $n \geqslant 2$. If $n=2$, we have a smooth plane curve of some degree d and hence of genus $\frac{(d-1)(d-2)}{2}$, which is never 2. Therefore $n \geqslant 3$, or in other words $h^{0}(X, \mathcal{O}(D)) \geqslant 4$. Next observe that $\operatorname{deg} D>0$ because D is ample. Since X is not rational, by Exercise 3 (b) it follows that $h^{0}\left(X, \mathcal{O}_{X}(D)\right) \leqslant \operatorname{deg}(D)$. Therefore $\operatorname{deg} D \geqslant 4$. This implies that

$$
\operatorname{deg}\left(\Omega_{X} \otimes \mathcal{O}_{X}(-D)\right)=2 g-2-\operatorname{deg} D \leqslant-2
$$

and hence $h^{0}\left(X, \Omega_{X} \otimes \mathcal{O}_{X}(-D)\right)=0$. By Riemann-Roch, we can now deduce that

$$
4 \leqslant h^{0}\left(X, \mathcal{O}_{X}(D)\right)=\chi\left(X, \mathcal{O}_{X}(D)\right)=(1-2)+\operatorname{deg} D
$$

and hence $\operatorname{deg} D \geqslant 5$, as desired.
5. Let X be an irreducible smooth plane projective curve of degree 4 over an algebraically closed field k.
(a) Show that the given embedding $X \hookrightarrow \mathbb{P}_{k}^{2}$ is the canonical embedding of X.
(b) Deduce that X is not hyperelliptic.
(c) Show that the effective canonical divisors on X are precisely the divisors of the form $X \cap L$ for all lines L in \mathbb{P}_{k}^{2}.

Solution: (a) Observe first that the embedding is determined by three sections in $H^{0}\left(X, \mathcal{O}_{X}(1)\right)$ which generate the sheaf $\mathcal{O}_{X}(1)$. These sections must be k-linearly independent, because any linear dependence would force X into a line in \mathbb{P}_{k}^{2} and hence make its genus 0 . Next, since X is a curve of degree 4 , by $\S 5.10$ of the course we have $\Omega_{X / k}=\omega_{X / k} \cong \mathcal{O}_{X}(4-2-1)=\mathcal{O}_{X}(1)$. On the other hand, by $\S 7.5$ of the course the genus of X is $\frac{(4-2)(4-1)}{2}=3$; hence $h^{0}\left(X, \Omega_{X / k}\right)=3$. Thus the given embedding is determined by three k-linearly independent sections in $H^{0}\left(X, \mathcal{O}_{X}(1)\right) \cong H^{0}\left(X, \Omega_{X / k}\right)$, which already has dimension 3 ; hence by a basis of $H^{0}\left(X, \Omega_{X / k}\right)$. It is therefore the canonical embedding.
(b) For a curve X of genus $\geqslant 1$ the canonical morphism is a closed embedding if and only if X is not hyperelliptic.
(c) By definition a divisor D is called canonical if and only if $\mathcal{O}_{X}(D) \cong \Omega_{X / k}$. For any effective canonical divisor D the composite homomorphism $\mathcal{O}_{X} \hookrightarrow \mathcal{O}_{X}(D) \cong$
$\Omega_{X / k}$ amounts to a non-zero section $\omega \in H^{0}\left(X, \Omega_{X / k}\right)$ with $\operatorname{div}(\omega)=D$. Conversely, for any non-zero section $\omega \in H^{0}\left(X, \Omega_{X / k}\right)$, multiplication by ω yields a homomorphism $\mathcal{O}_{X} \hookrightarrow \Omega_{X / k}$ which extends to an isomorphism $\mathcal{O}_{X}(D) \cong \Omega_{X / k}$ for the effective divisor $D=\operatorname{div}(\omega)$. Thus the effective canonical divisors are precisely the divisors of the form $\operatorname{div}(\omega)$ for all non-zero $\omega \in H^{0}\left(X, \Omega_{X / k}\right)$. Under the isomorphism $\Omega_{X / k} \cong \mathcal{O}_{X}(1)$ these are precisely the divisors of the form $\operatorname{div}(\ell)$ for all non-zero $\ell \in H^{0}\left(X, \mathcal{O}_{X}(1)\right)$, or again for all non-zero linear polynomials in the three coordinates on \mathbb{P}_{k}^{2}. These are precisely the divisors associated to the finite subschemes of the form $X \cap L$ for all lines $L \subset \mathbb{P}_{k}^{2}$.

