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Riemann-Roch, Embeddings in Projective Space

1. Let k be an arbitrary field with algebraic closure k̄. Let X be a geometrically
integral projective curve over k with h1(X,OX) = 0. Show:

(a) The base change Xk̄ is isomorphic to P1
k̄
.

(b) The curve X is isomorphic to a plane curve of degree 2.
(c) We have X ∼= P1

k if and only if X(k) ̸= ∅.

Solution: (a) We proved in the course that H1(Xk̄,OXk̄
) ∼= H1(X,OX)⊗k k̄ (flat

base change). This implies that Xk̄ has genus 0, and is hence isomorphic to P1
k̄
.

(b) By flat base change we also have H0(Xk̄,Ω
∨
Xk̄

) ∼= H0(X,Ω∨
X)⊗k k̄. We showed

in the course that Ω∨
Xk̄

is very ample and determines the anticanonical embedding
Xk̄ ↪→ P2

k̄
whose image is a plane curve of degree 2. By choosing global sections

of Ω∨
Xk̄

that are already defined over k, this is obtained by base change from a
morphism X → P2

k. This morphism is non-constant and hence finite. We conclude
that it is a closed embedding using the lemma below (which by the way also holds
without the assumption “affine”). Since the images of Xk̄ and X are defined by
the same polynomial, see that X also has degree 2.

Lemma: An affine morphism X → Y of schemes over k is a closed embedding,
resp. an isomorphism, if and only if the base change Xk̄ → Yk̄ has that property.

Proof. The problem is local on Y , so it reduces to the case that Y is affine.
Then Y = SpecB and X = SpecA for some B-algebra A, and correspondingly
Yk̄ = SpecB ⊗k k̄ and Xk̄ = SpecA ⊗k k̄. Now X → Y is a closed embedding,
resp. an isomorphism, if and only if B → A is surjective, resp. an isomorphism;
and the analogue holds for Xk̄ → Yk̄. But by mere linear algebra, using only that
we have a linear map of k-vector spaces, we know that B → A is surjective, resp.
an isomorphism, if and only if B ⊗k k̄ → A⊗k k̄ has that property.

(c) If X ∼= P1
k, then clearly X(k) ̸= ∅ (take for instance the point (0 : 1) in

standard homogeneous coordinates). Conversely, suppose that X(k) contains a
point P . Then OX(P ) is an invertible sheaf of degree 1 on X, whose pullback to
Xk̄

∼= P1
k̄
still has degree 1. Thus h0(X,OX(P )) = h0(Xk̄,OXk̄

(P )) = 2; hence
H0(X,OX(P )) contains a non-constant function f with a simple pole at P and
no other pole. The associated embedding of function fields k(f) ↪→ K(X) then
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corresponds to a finite morphism X → P1
k. Over k̄ we have proved in the course

that the morphism associated to such an f is an isomorphism. By the lemma
above we deduce that X → P1

k itself is an isomorphism, as desired.

Aliter: By part (b), we may identify X with V (f) ⊂ P2
k := Proj(k[x, y, z]) for a

some non-zero f ∈ k[x, y, z] homogeneous of degree 2. After a suitable change of
coordinates, we may assume that P := (1 : 0 : 0) ∈ X(k). The polynomial then
has the form

f = x(a12y + a13z) + (a22y
2 + a23yz + a33z

2).

Here a12 and a13 cannot both be 0, because otherwise Xk̄ would be singular at P .
After possibly interchanging y and z we may assume that a13 ̸= 0. Then, after
applying the linear substitution z ⇝ a12y+ a13z while keeping the other variables
fixed, we may suppose that

f = xz + (a22y
2 + a23yz + a33z

2) = (x+ a23y + a33z)z + a22y
2.

Thereafter the substitution x ⇝ x + a23y + a33z with the other variables fixed
brings the polynomial into the form

f = xz + a22y
2.

Here a22 must be non-zero, because f is irreducible and hence not a multiple of z.
The final substitution a22z ⇝ z thus brings the equation into the form xz − y2.
But we already know that V̄ (xz − y2) ⊂ P2

k is the image of the 2-uple embedding
P1
k ↪→ P2

k. Thus X ∼= P1
k, as desired.

*2. Let X be an irreducible smooth projective curve of genus g = 1 over an alge-
braically closed field k. Show that there exists a locally free sheaf of rank 2 on X
which is not a direct sum of invertible sheaves.
(For instance let iP denote the embedding of a closed point P into X, let E be the
kernel of a homomorphism OX(P )⊕OX → iP∗k which is non-zero on each direct
summand, and show that the resulting short exact sequence

(∗) 0 // OX

(1
0
)
// E (0,1) // OX

// 0

does not split.)
Solution: Define E as described. Then the projection to the second factor (0, 1) :
E → OX is surjective and its kernel is the subsheaf E ∩ (OX(P ) ⊕ 0) = OX ⊕ 0;
hence the sequence (∗) is exact. Also, since X has genus 1, we have H0(OX(P )) =
H0(OX) = k and hence H0(OX(P ) ⊕ OX) = H0(O⊕2

X ) = k⊕2. Since E ∩ O⊕2
X =

OX⊕OX(−P ) andH0(OX(−P )) = 0, it follows thatH0(E) = H0(E∩O⊕2
X ) = k⊕0.

Taking global sections the sequence (∗) yields a left exact sequence

0 // H0(OX)
(a) // H0(E) (b) // H0(OX)

0 // k // k ⊕ 0 // k
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where (a) is an isomorphism and hence (b) is zero. But if the sequence (∗) were
split, it would yield a short exact sequence of H0 groups. Thus the sequence does
not split.
Now suppose that E ∼= L1⊕L2 is a direct sum of invertible sheaves in an arbitrary
way. Then each Li is either a subsheaf of OX ⊕0 or the composite homomorphism
Li ↪→ E ↠ OX is non-zero. In each case Li is isomorphic to a subsheaf of OX .
In particular deg(Li) ⩽ deg(OX) = 0. But the exact sequence (∗) already implies
that deg(L1) + deg(L2) = deg(E) = deg(OX) + deg(OX) = 0. Thus we must
have deg(Li) = 0 and hence Li

∼= OX . This implies that E ∼= O⊕2
X and hence

H0(E) ∼= H0(O⊕2
X ) = k⊕2. But we have seen above that dimk H

0(E) = 1, yielding
a contradiction. Thus E is a locally free sheaf of rank 2 which is not a direct sum
of invertible sheaves.

3. Let X be a smooth, irreducible curve of genus g over an algebraically closed field.
Let D be an effective divisor on X. Show that:

(a) h0(X,OX(D)) ⩽ degD + 1.
(b) h0(X,OX(D)) ⩽ degD if and only if deg(D) ⩾ 1 and g ⩾ 1.
(c) h0(X,OX(D)) ⩽ degD − 1 if deg(D) ⩾ 2 and X is not hyperelliptic.

Solution: We first prove the following general lemma:
Lemma: For any divisor D0 and any effective divisor D′ we have

h0(OX(D0 +D′)) ⩽ H0(OX(D0)) + degD′.

Indeed, this is trivial if D′ = 0. If D′ = P for a closed point P , the quotient sheaf
OX(D0 + P )/OX(D0) has stalk k at P and is zero elsewhere. Thus we have a
left exact sequence 0 → H0(OX(D0)) → H0(OX(D0 + P )) → k which implies the
desired inequality. The general case follows by induction on degD′.
Now let D be any effective divisor. With D0 = 0 and D′ = D the lemma shows
that h0(OX(D)) ⩽ h0(OX) + degD. Since h0(OX) = 1, this proves (a).
To prove (b) suppose first that deg(D) ⩾ 1 and g ⩾ 1. Write D = D0 + D′

with effective divisors D0 and D′ of respective degrees 1 and degD − 1. Since
g ⩾ 1, we then have h0(OX(D0)) ⩽ 1. The lemma thus shows that h0(OX(D)) ⩽
h0(OX(D0))+degD−1 ⩽ 1+degD−1 = degD. This proves the “if” part of (b).
For the “only if” part suppose first that degD = 0. Since D is effective, this means
that D = 0 and hence h0(OX(D)) = h0(OX) = 1 = degD+ 1. Suppose next that
g = 0, so that without loss of generality X = P1

k. Then OX(D) ∼= OX(degD) with
degD ⩾ 0 because D is effective; hence h0(OX(D)) = h0(OX(degD)) = degD+1.
This proves the “only if” part of (b).
For (c) write D = D0 +D′ with effective divisors D0 and D′ of respective degrees
2 and degD − 2. Since X is not hyperelliptic, we then have h0(OX(D0)) ⩽ 1. The
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lemma thus shows that h0(OX(D)) ⩽ h0(OX(D0)) + degD− 2 ⩽ 1+degD− 2 =
degD − 1, as desired.

4. Let X be a curve of genus 2. Show that a divisor D on X is very ample if and
only if degD ⩾ 5.
Solution: In the lecture we proved that every divisor of degree ⩾ 2g + 1 = 5 is
very ample. Conversely suppose that D is very ample. Then X embeds into Pn

k for
n := h0(X,O(D))− 1. Since X is not rational, we must have n ⩾ 2. If n = 2, we
have a smooth plane curve of some degree d and hence of genus (d−1)(d−2)

2
, which

is never 2. Therefore n ⩾ 3, or in other words h0(X,O(D)) ⩾ 4. Next observe
that degD > 0 because D is ample. Since X is not rational, by Exercise 3 (b) it
follows that h0(X,OX(D)) ⩽ deg(D). Therefore degD ⩾ 4. This implies that

deg(ΩX ⊗OX(−D)) = 2g − 2− degD ⩽ −2

and hence h0(X,ΩX⊗OX(−D)) = 0. By Riemann-Roch, we can now deduce that

4 ⩽ h0(X,OX(D)) = χ(X,OX(D)) = (1− 2) + degD

and hence degD ⩾ 5, as desired.

5. Let X be an irreducible smooth plane projective curve of degree 4 over an alge-
braically closed field k.

(a) Show that the given embedding X ↪→ P2
k is the canonical embedding of X.

(b) Deduce that X is not hyperelliptic.
(c) Show that the effective canonical divisors on X are precisely the divisors of

the form X ∩ L for all lines L in P2
k.

Solution: (a) Observe first that the embedding is determined by three sections in
H0(X,OX(1)) which generate the sheaf OX(1). These sections must be k-linearly
independent, because any linear dependence would force X into a line in P2

k and
hence make its genus 0. Next, since X is a curve of degree 4, by §5.10 of the
course we have ΩX/k = ωX/k

∼= OX(4 − 2 − 1) = OX(1). On the other hand,
by §7.5 of the course the genus of X is (4−2)(4−1)

2
= 3; hence h0(X,ΩX/k) = 3.

Thus the given embedding is determined by three k-linearly independent sections
in H0(X,OX(1)) ∼= H0(X,ΩX/k), which already has dimension 3; hence by a basis
of H0(X,ΩX/k). It is therefore the canonical embedding.
(b) For a curve X of genus ⩾ 1 the canonical morphism is a closed embedding if
and only if X is not hyperelliptic.
(c) By definition a divisor D is called canonical if and only if OX(D) ∼= ΩX/k. For
any effective canonical divisor D the composite homomorphism OX ↪→ OX(D) ∼=
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ΩX/k amounts to a non-zero section ω ∈ H0(X,ΩX/k) with div(ω) = D. Con-
versely, for any non-zero section ω ∈ H0(X,ΩX/k), multiplication by ω yields a
homomorphism OX ↪→ ΩX/k which extends to an isomorphism OX(D) ∼= ΩX/k

for the effective divisor D = div(ω). Thus the effective canonical divisors are
precisely the divisors of the form div(ω) for all non-zero ω ∈ H0(X,ΩX/k). Under
the isomorphism ΩX/k

∼= OX(1) these are precisely the divisors of the form div(ℓ)
for all non-zero ℓ ∈ H0(X,OX(1)), or again for all non-zero linear polynomials
in the three coordinates on P2

k. These are precisely the divisors associated to the
finite subschemes of the form X ∩ L for all lines L ⊂ P2

k.
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