D-MATH
Prof. Richard Pink

Algebraic Geometry II
HS 2017

Solutions 14

Hyperelliptic Curves, Coverings

1. Let k be a perfect field of characteristic $p>0$.
(a) Let K be a finitely generated field extension of k of transcendence degree 1 . Prove that for any $r \geqslant 1$ the only purely inseparable extension of degree p^{r} of K is the overfield $\left\{x^{1 / p^{r}} \mid x \in K\right\}$.
(b) Deduce that for every purely inseparable finite morphism of curves $X \rightarrow Y$ over k we have $g(X)=g(Y)$.

Solution: (a) By induction on r the problem reduces to the case $r=1$. Let $L:=\left\{x^{1 / p} \mid x \in K\right\}$ within an algebraic closure of K; this is a purely inseparable extension of K. Any inseparable extension E / K of degree p is generated by an element of the form $a^{1 / p}$ for some $a \in K$ and hence contained in L. It therefore suffices to prove that $[L / K]=p$.
For this choose $t \in K$ transcendental over k such that $[K / k(t)]$ is minimal. Then $t^{1 / p} \in L \backslash K$, and so $K\left(t^{1 / p}\right) / K$ is a subextension of L / K of degree p. It therefore suffices to show that $L=K\left(t^{1 / p}\right)$.
For this consider any $a \in K$. We compare the degrees of the following finite field extensions within L :

On the one hand we have $t^{1 / p} \notin K$ and so $t^{1 / p} \notin k(t, a)$; hence $k\left(t^{1 / p}, a\right) / k(t, a)$ is inseparable of degree p, just as $k\left(t^{1 / p}\right) / k(t)$. On the other hand, since k is perfect, the Frobenius homomorphism $x \mapsto x^{p}$ induces a commutative diagram
with horizontal isomorphisms

Thus $\left[k\left(t^{1 / p}, a^{1 / p}\right) / k\left(t^{1 / p}\right)\right]=[k(t, a) / k(t)]$. The multiplicativity of degrees in field extensions therefore implies that

$$
\left[k\left(t^{1 / p}, a^{1 / p}\right) / k(t)\right]=\left[k\left(t^{1 / p}, a\right) / k(t)\right] .
$$

Thus $k\left(t^{1 / p}, a^{1 / p}\right)=k\left(t^{1 / p}, a\right)$ and hence $a^{1 / p} \in k\left(t^{1 / p}, a\right) \subset K\left(t^{1 / p}\right)$. Since a was arbitrary, it follows that $L \subset K\left(t^{1 / p}\right)$ and hence $L=K\left(t^{1 / p}\right)$, as desired.
(b) If $X \rightarrow Y$ is purely inseparable and finite, the corresponding field extension $K(X) / K(Y)$ is purely inseparable of degree p^{r} for some $r \in \mathbb{Z}_{\geqslant 0}$. By (a) we therefore have $K(X)^{p^{r}}=K(Y)$ and hence the following commutative diagram

Because $K(Y)$ is the pushout of this diagram, we obtain an isomorphism f : $K(X) \otimes_{k,() p^{r}} k \xrightarrow{\sim} K(Y)$. Let $\operatorname{Frob}_{p^{r}}: \operatorname{Spec} k \rightarrow \operatorname{Spec} k$ be the automorphism induced by the Frobenius ($)^{p^{r}}: k \xrightarrow{\sim} k$. Then f corresponds to an isomorphism of curves $Y \xrightarrow{\sim} X \times_{\text {Spec } k, \operatorname{Frob}_{p} r} \operatorname{Spec} k$. Thus $g(X)=g(Y)$ as the genus is stable under flat base change.

Caution: The fields $K(X)$ and $K(Y)$ are not necessarily isomorphic as field extensions of k. Their isomorphy as abstract fields does not yet prove (b), because the genus is an invariant of a curve or of its function field over k.

2 . Let k be an algebraically closed field of characteristic 2 and let $g \geqslant 1$. Show that the smooth projective curve with the affine equation

$$
y^{2}+y=x^{2 g+1}
$$

is hyperelliptic of genus g. Hence there exist hyperelliptic curves of every genus $\geqslant 1$ in characteristic 2 .
Solution: Set $a(x, y):=y^{2}+y-x^{2 g+1}$. Since $\frac{\partial a}{\partial y}=1$, the chart $U:=\operatorname{Spec} k[x, y] /(a)$ is nonsingular by the jacobian criterion. Next substitute $x=s^{-1}$ and $y=s^{-g-1} t$, which transforms the equation into $b(s, t):=t^{2}+s^{g+1} t-s=0$. Here $\frac{\partial b}{\partial t}=s^{g+1}$ is
zero if and only if s is zero, in which case $\frac{\partial b}{\partial s}=(g+1) s^{g} t-1$ is non-zero. Thus the chart $V:=\operatorname{Spec} k[s, t] /(b)$ is also nonsingular by the jacobian criterion. The morphisms $U \rightarrow \mathbb{P}_{k}^{1},(x, y) \mapsto[x: 1]$ and $V \rightarrow \mathbb{P}_{k}^{1},(s, t) \mapsto[1: s]$ glue to a finite separable morphism $f: U \cup V \rightarrow \mathbb{P}_{k}^{1}$ of degree 2 . Thus $U \cup V$ is the desired smooth projective curve X. To determine the genus of X note that

$$
\begin{aligned}
k[x, y] /(a) & =k[x] \oplus k[x] \cdot y \quad \text { and } \\
k[s, t] /(b) & =k[s] \oplus k[s] \cdot t=k\left[x^{-1}\right] \oplus k\left[x^{-1}\right] \cdot x^{-g-1} y .
\end{aligned}
$$

Together this shows that

$$
f_{*} \mathcal{O}_{X}=\mathcal{O}_{\mathbb{P}_{k}^{1}} \oplus \mathcal{O}_{\mathbb{P}_{k}^{1}}(-(g+1) \infty) \cdot y .
$$

Thus X has genus
$h^{1}\left(X, \mathcal{O}_{X}\right)=h^{1}\left(\mathbb{P}_{k}^{1}, f_{*} \mathcal{O}_{X}\right)=h^{1}\left(\mathbb{P}_{k}^{1}, \mathcal{O}_{\mathbb{P}_{k}^{1}}\right)+h^{1}\left(\mathbb{P}_{k}^{1}, \mathcal{O}_{\mathbb{P}_{k}^{1}}(-(g+1) \infty)\right)=0+g=g$.
3. Let $F \in k[x]$ be a separable polynomial of even degree $\geqslant 2$ over an algebraically closed field k with char $k \neq 2$. Let X be the smooth projective curve over k with the affine equation $y^{2}=F(x)$ and let $R:=k[x, y] /\left(y^{2}-F(x)\right)$. Show that the following properties are equivalent:
(a) There exist $A, B \in k[x]$ with $B \neq 0$ such that $A^{2}-F B^{2}=1$.
(b) $R^{\times} \neq k^{\times}$.
(c) Let $P_{1}, P_{2} \in X$ be the two points at infinity where x has a pole. Then the divisor class $\left[P_{1}-P_{2}\right] \in \mathrm{Cl}^{0}(X)$ is an element of finite order.
${ }^{* *}$ Give examples where these properties hold and where they don't.
Solution: Note that $R=k[x] \oplus y \cdot k[x]$, and the hyperelliptic involution is the automorphism $\sigma:(x, y) \mapsto(x,-y)$. By the course there are precisely two points of X above the point $x=\infty$ of \mathbb{P}_{k}^{1}, and they are interchanged by σ.
$(\mathrm{a}) \Rightarrow(\mathrm{b}):$ Consider $A, B \in k[x]$ with $B \neq 0$ such that $A^{2}-F B^{2}=1$. Then in R we have $(A+y B)(A-y B)=1$. But that means that $A+y B \in R \backslash k$ has the inverse $A-y B$, proving (b).
$(\mathrm{b}) \Rightarrow(\mathrm{a}):$ Consider $A, B \in k[x]$ such that $A+y B$ is a unit in R but not in k^{\times}, say with inverse $A^{\prime}+y B^{\prime}$ for $A^{\prime}, B^{\prime} \in k[x]$. Applying σ we find that $A-y B$ is also a unit with inverse $A^{\prime}-y B^{\prime}$. Taking products it follows that $A^{2}-F B^{2}$ is a unit with inverse $A^{\prime 2}-F B^{\prime 2}$. But these are now elements of $k[x]$, whose group of units is k^{\times}; hence $A^{2}-F B^{2} \in k^{\times}$. Since k is algebraically closed, we can write $A^{2}-F B^{2}=a^{2}$ for some $a \in k^{\times}$. After replacing (A, B) by $(A / a, B / a)$ we get $A^{2}-F B^{2}=1$. Finally, if $B=0$, we get $A A^{\prime}=1$ with $A, A^{\prime} \in k[x]$, so that $A+y B=A \in k[x]^{\times}=k^{\times}$, contrary to the assumption. Thus A, B satisfy (a).
(b) \Rightarrow (c): Consider any $f \in R^{\times} \backslash k^{\times}$. Then the divisor of f is non-zero and trivial on Spec R. Thus $\operatorname{div}(f)=n_{1} P_{1}+n_{2} P_{2}$ for some integers n_{1}, n_{2} which are not both zero. Since any principal divisor has total degree 0 , we must then in fact have $\operatorname{div}(f)=n\left(P_{1}-P_{2}\right)$ for some non-zero integer n. But that means that $|n|$ times that divisor class $\left[P_{1}-P_{2}\right]$ is the trivial divisor class.
$(\mathrm{c}) \Rightarrow(\mathrm{b})$: Suppose that $n\left[P_{1}-P_{2}\right]=0$ in $\mathrm{Cl}^{0}(X)$ for some integer $n>0$. Then $n\left(P_{1}-P_{2}\right)=\operatorname{div}(f)$ for some non-zero $f \in K(X)$. This f then has no poles or zeros in the chart Spec R; so both it and its inverse lie in R and hence in R^{\times}. Since $\operatorname{div}(f) \neq 0$, we also have $f \notin k^{\times}$and hence $f \in R^{\times} \backslash k^{\times}$.
Constructing examples for both cases is not so easy. If k is the algebraic closure of a finite field \mathbb{F}_{q} and F has coefficients in \mathbb{F}_{q}, the divisor class $\left[P_{1}-P_{2}\right.$] always has finite order. The reason is that $\mathrm{Cl}^{0}(X) \cong J(k)$ where J is the jacobian variety of X, and the class $\left[P_{1}-P_{2}\right.$] corresponds to a point in the finite subgroup $J\left(\mathbb{F}_{q}\right)$. But the way that the order of $\left[P_{1}-P_{2}\right]$ depends on the coefficients of F is very complicated.
With some knowledge of elliptic curves one can construct examples for both cases with $g=1$. Namely, take any curve E of genus 1 over k and any closed point P_{0}. Then we have a bijection $|E| \rightarrow \mathrm{Cl}^{0}(X), P \mapsto\left[P-P_{0}\right]$. By solving some explicit equations one can always produce a point $P \neq P_{0}$ such that $\left[P-P_{0}\right.$] has finite order. By contrast, for most points that one writes down randomly one can prove that $\left[P-P_{0}\right]$ does not have finite order. In either case one then writes E as a double cover of \mathbb{P}_{k}^{1} such that P_{0} and P are precisely the two points above ∞ (compare the solution to problem 4a below), so that $\left(E, P, P_{0}\right)=\left(X, P_{1}, P_{2}\right)$ has the desired property.
4. Let k be an algebraically closed field of characteristic $\neq 2$. An elliptic curve is an irreducible smooth projective curve of genus 1. Prove:
(a) Show that for any two distinct closed points P and Q on an elliptic curve E there exists an automorphism $\sigma: E \rightarrow E$ of order 2 with $\sigma(P)=Q$.
(b) For any $\lambda \in k \backslash\{0,1\}$ the curve $E_{\lambda} \subset \mathbb{P}_{k}^{2}$ that is given by the equation

$$
Z Y^{2}=X(X-Z)(X-\lambda Z)
$$

is an elliptic cuve.
(c) Show that any elliptic curve E is isomorphic to some such E_{λ}.
(d) Show that $E_{\lambda} \cong E_{\mu}$ if and only if

$$
\mu \in\left\{\lambda, \frac{1}{\lambda}, 1-\lambda, \frac{1}{1-\lambda}, \frac{\lambda}{\lambda-1}, \frac{\lambda-1}{\lambda}\right\} .
$$

(e) The j-invariant of an elliptic curve E is the element

$$
j(E):=2^{8} \cdot \frac{\left(\lambda^{2}-\lambda+1\right)^{3}}{\lambda^{2}(\lambda-1)^{2}} \in k
$$

for any $\lambda \in k$ with $E_{\lambda} \cong E$. Show that $E \mapsto j(E)$ induces a bijection from the set of isomorphism classes of elliptic curves over k to k.

Solution: (a) This solution partly follows the proof of Lemma IV.4.2 in Hartshorne. Consider the divisor $D:=P+Q$. Then $h^{1}\left(X, \mathcal{O}_{X}(D)\right)=0$, because $\operatorname{deg} D=2>$ $2 g(E)-2=0$. Hence $h^{0}\left(X, \mathcal{O}_{X}(D)\right)=\operatorname{deg} D=2$, and so D induces a morphism $f: E \rightarrow \mathbb{P}_{k}^{1}$ of degree 2 with $f^{*} \infty=D$. This morphism is separable, because the characteristic is not 2. Therefore $K(E)$ is Galois of degree 2 over $K\left(\mathbb{P}_{k}^{1}\right)=k(x)$. The induced involution $\sigma \in \operatorname{Gal}(K(E) / k(x))$ then acts on X over \mathbb{P}_{k}^{1} and interchanges P and Q.
(b) Same calculation as for general hyperelliptic curves in the course.
(c) Pick a closed point $P \in E$ and repeat the construction in (a) with the divisor $D:=2 P$. This yields a separable morphism $f: E \rightarrow \mathbb{P}_{k}^{1}$ of degree 2 with $f^{*} \infty=$ $2 P$. By the general formula for hyperelliptic curves from the course the curve E is then given by an affine equation of the form $y^{2}=c(x)$ for a separable polynomial $c \in k[x]$ of degree 3. After a linear substitution of the form $x \rightsquigarrow \alpha x+\beta$ we may suppose that c has the roots 0 and 1. After another substitution $y \rightsquigarrow \gamma y$ this yields the equation $y^{2}=x(x-1)(x-\lambda)$ for some $\lambda \in k \backslash\{0,1\}$. Thus $E \cong E_{\lambda}$.
(d) As for any hyperelliptic curve, for any elliptic curve E the morphism $E \rightarrow \mathbb{P}_{k}^{1}$ of degree 2 is unique up to an automorphism of \mathbb{P}_{k}^{1}. Thus the set of 4 branch points in \mathbb{P}_{k}^{1} is unique up to $\operatorname{Aut}\left(\mathbb{P}_{k}^{1}\right)$. For E_{λ} this is the set $\{0,1, \lambda, \infty\}$. Thus we must show that there exists $\varphi \in \operatorname{Aut}\left(\mathbb{P}_{k}^{1}\right)$ with $\varphi(\{0,1, \lambda, \infty\})=\{0,1, \mu, \infty\}$ if and only if μ lies in the indicated set. Any such φ must map the points to each other in one of $\left|S_{4}\right|=24$ different ways. Recall that $\operatorname{Aut}\left(\mathbb{P}_{k}^{1}\right) \cong \mathrm{PGL}_{2}(k)$ via Möbius transformations, and that any Möbius transformation is determined by the images of three distinct points. Thus each case reduces to a quick finite computation. The total calculation can be sped up a lot by exploiting the fact that the possibilities for μ are obtained from the Möbius transformations

$$
t \mapsto t, \frac{1}{t}, 1-t, \frac{1}{1-t}, \frac{t}{t-1}, \frac{t-1}{t}
$$

which form a subgroup $G<\operatorname{Aut}\left(\mathbb{P}_{k}^{1}\right)$ that is isomorphic to S_{3}.
(e) The group G acts faithfully on the rational function field $k(t)$; hence $k(t) / k(t)^{G}$ is a finite Galois extension with Galois group G. Direct computation shows that the rational function

$$
j(t):=2^{8} \cdot \frac{\left(t^{2}-t+1\right)^{3}}{t^{2}(t-1)^{2}}
$$

is G-invariant. The degree of the extension $k(t) / k(j)$ is the maximum of the degrees of the numerator and the denominator of j, which is 6 . Since $|G|=6$, we deduce that $k(t)^{G}=k(j)$. Thus j corresponds to separable morphism $\mathbb{P}_{k}^{1} \rightarrow \mathbb{P}_{k}^{1}$ of degree 6. As the associated field extension is Galois, the Galois group acts
transitively on all fibers by the same argument as in the last lecture. Thus j induces an injective map

$$
(k \backslash\{0,1\}) / G \hookrightarrow k,[\lambda] \mapsto j(\lambda) .
$$

To show that this is surjective, consider any $j_{0} \in k$. Since k is algebraically closed of characteristic $\neq 2$, the equation $2^{8}\left(t^{2}-t+1\right)^{3}-t^{2}(t-1)^{2} j_{0}=0$ has a solution $\lambda \in k$. This solution cannot be 0 or 1 ; hence $j(\lambda)=j_{0}$. The map is therefore surjective and hence bijective. Finally, (c) and (d) imply that the isomorphism classes of elliptic curves over k are in bijection with the set $(k \backslash\{0,1\}) / G$, so (e) follows.
5. Show that the hyperelliptic curve over \mathbb{C} with the affine equation $y^{2}=x^{5}-x$ has precisely 48 automorphisms.
Solution: Denote the curve by X and consider the morphism $f: X \rightarrow \mathbb{P}_{\mathbb{C}}^{1}$, $(x, y) \mapsto x$ of degree 2 . Since composition with automorphisms of $\mathbb{P}_{\mathbb{C}}^{1}$ yields all morphisms $X \rightarrow \mathbb{P}_{\mathbb{C}}^{1}$ of degree 2 , the group $\operatorname{Aut}_{k}(X)$ acts on the ramification points of f. Let $P_{1}, \ldots, P_{4}, Q_{1}, Q_{2}$ be the ramification points over $1, i,-1,-i, 0, \infty \in \mathbb{P}_{\mathbb{C}}^{1}$, respectively. The automorphisms defined as

$$
\begin{aligned}
(x, y) & \mapsto(i x, y) \\
(x, y) & \mapsto\left(1 / x, i y / x^{3}\right)
\end{aligned}
$$

act on $\left\{P_{1}, \ldots, P_{4}\right\}$ as the dihedral group D_{4} of order 8. The automorphism defined as

$$
(x, y) \mapsto\left(\frac{-i x+1}{x+1}, \frac{y}{(-i)^{1 / 2}(x+1)^{3}}\right),
$$

with any choice of $(-i)^{1 / 2}$ has order 3 and acts nontrivially on the ramification points. Furthermore the hyperelliptic involution acts on X and fixes all ramification points. One checks that these automorphisms generate a subgroup of $\operatorname{Aut}_{k}(X)$ of order 48.
On the other hand, as a hyperelliptic curve with 6 ramification points, X is a curve of genus 2. By Hurwitz we thus have $|\operatorname{Aut}(X)| \leqslant 84(2-1)=84$. Since $\operatorname{Aut}(X)$ already contains a subgroup of order 48 with $2 \cdot 48=96>84$, we conclude that $|\operatorname{Aut}(X)|=48$.
6. Let k be an algebraically closed field of characteristic $p \geqslant 5$ and consider the hyperelliptic curve X of genus g given by

$$
y^{2}=x^{p}-x .
$$

Show that $|\operatorname{Aut}(X)| \geqslant 2 p\left(p^{2}-1\right)>16 g^{3}$.

Solution: Consider the automorphisms

$$
\begin{aligned}
& (x, y) \mapsto(x+1, y), \\
& (x, y) \mapsto(\alpha x, \sqrt{\alpha} y) \quad \text { for any } \alpha \in \mathbb{F}_{p}^{\times} \text {and any square root in } k^{\times}, \\
& (x, y) \mapsto\left(-1 / x, \frac{y}{x^{(p+1) / 2}}\right) .
\end{aligned}
$$

They act on the x-coordinate through the Möbius transformations associated to the respective matrices

$$
\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right), \quad\left(\begin{array}{ll}
\alpha & 0 \\
0 & 1
\end{array}\right), \quad\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

By a well-known exercise from Algebra I these matrices generate the group $\mathrm{GL}_{2}\left(\mathbb{F}_{p}\right)$. Since $\mathrm{PGL}_{2}\left(\mathbb{F}_{p}\right)=\mathrm{GL}_{2}\left(\mathbb{F}_{p}\right) / \mathbb{F}_{p}^{\times}$, we deduce that $\left|\mathrm{PGL}_{2}\left(\mathbb{F}_{p}\right)\right|=\left|\mathrm{GL}_{2}\left(\mathbb{F}_{p}\right)\right| /\left|\mathbb{F}_{p}^{\times}\right|=$ $\left(p^{2}-1\right)\left(p^{2}-p\right) /(p-1)=p\left(p^{2}-1\right)$. In addition the hyperelliptic involution $(x, y) \mapsto(x,-y)$ acts trivially on the x-coordinate. Thus $|\operatorname{Aut}(X)| \geqslant 2 p\left(p^{2}-1\right)$. On the other hand, since p is odd, by the course we have $p+1=2 g+2$. Thus $2 p\left(p^{2}-1\right)>16 g^{3}$.

