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HYPERELLIPTIC CURVES, COVERINGS

1. Let k be a perfect field of characteristic p > 0.

(a) Let K be a finitely generated field extension of k of transcendence degree 1.
Prove that for any r > 1 the only purely inseparable extension of degree p”
of K is the overfield {z'/?" | z € K}.

(b) Deduce that for every purely inseparable finite morphism of curves X — Y
over k we have g(X) = g(Y).

Solution: (a) By induction on r the problem reduces to the case r = 1. Let
L := {2¥/? | x € K} within an algebraic closure of K; this is a purely inseparable
extension of K. Any inseparable extension E/K of degree p is generated by an
element of the form a'/? for some a € K and hence contained in L. It therefore
suffices to prove that [L/K] = p.

For this choose t € K transcendental over k such that [K/k(t)] is minimal. Then
t'/P ¢ LN K, and so K (t'/?) /K is a subextension of L/K of degree p. It therefore
suffices to show that L = K (/7).

For this consider any a € K. We compare the degrees of the following finite field
extensions within L:
k(P a'/P)

N

k(t'7 a) )

A

k(t,a)  k(t'/?)

On the one hand we have t'/? ¢ K and so t'/? ¢ k(t,a); hence k(t'/?,a)/k(t,a)
is inseparable of degree p, just as k(t'/?)/k(t). On the other hand, since k is
perfect, the Frobenius homomorphism z + 2P induces a commutative diagram



with horizontal isomorphisms

k(7 alry — gt a)
k() — kj(t).

Thus [k(t'/?,a'/?)/k(t'/P)] = [k(t,a)/k(t)]. The multiplicativity of degrees in
field extensions therefore implies that

(k7 ") k()] = [k, a)/k(t)].

Thus k(t'/?,a'/?) = k(t'/?,a) and hence a'/? € k(t'/?,a) c K(t'/?). Since a was
arbitrary, it follows that L C K (#'/?) and hence L = K (t'/?), as desired.

(b) If X — Y is purely inseparable and finite, the corresponding field extension
K(X)/K(Y) is purely inseparable of degree p” for some r € Zsy. By (a) we
therefore have K(X)P" = K(Y) and hence the following commutative diagram

K(X)

k.
Because K(Y') is the pushout of this diagram, we obtain an isomorphism f :
K(X) ®(yr k = K(Y). Let Frob, : Speck — Speck be the automorphism
induced by the Frobenius ( )" : k = k. Then f corresponds to an isomorphism
of curves Y = X X Spec k,Frob,» Speck. Thus g(X) = g(Y) as the genus is stable
under flat base change.

Caution: The fields K(X) and K(Y) are not necessarily isomorphic as field ex-
tensions of k. Their isomorphy as abstract fields does not yet prove (b), because
the genus is an invariant of a curve or of its function field over k.

(a

)~
J
k

T

)

. Let k be an algebraically closed field of characteristic 2 and let g > 1. Show that
the smooth projective curve with the affine equation

y2 oy = 20+

is hyperelliptic of genus g. Hence there exist hyperelliptic curves of every genus
> 1 in characteristic 2.

Solution: Set a(x,y) := y*+y—=z*9*1. Since g—; =1, the chart U := Spec k[z, y]/(a)
is nonsingular by the jacobian criterion. Next substitute x = s=! and y = s797 !¢,
which transforms the equation into b(s,t) := t* + s9"1¢t — s = 0. Here $2 = s9*! is



zero if and only if s is zero, in which case % = (g + 1)s9t — 1 is non-zero. Thus
the chart V' := Speck[s, t]/(b) is also nonsingular by the jacobian criterion. The
morphisms U — P}, (z,y) — [z : 1] and V — Py, (s,t) — [1 : 5] glue to a finite
separable morphism f: UUV — P} of degree 2. Thus UUV is the desired smooth
projective curve X. To determine the genus of X note that

klz,y]/(a) = klz]@k[z]-y and
ks, t]/(b) = k[s|@k[s] -t = Kz~ @ klz"] 291y

Together this shows that
£.Ox = Ogy ® Ogy(~(g+1)00) .
Thus X has genus

h'(X,0x) = h' (P}, £.Ox) = h' (P}, Op1) + h' (P}, Opi (—(g + 1)20)) =0+ g = g.

. Let F' € k[z] be a separable polynomial of even degree > 2 over an algebraically
closed field k& with char k # 2. Let X be the smooth projective curve over k with
the affine equation y? = F(z) and let R := k[z,y]/(y* — F(x)). Show that the
following properties are equivalent:

(a) There exist A, B € k[z] with B # 0 such that A> — FB? = 1.
(b) R* # k*.

(c) Let P, P, € X be the two points at infinity where x has a pole. Then the
divisor class [P, — Py] € C1°(X) is an element of finite order.

**Give examples where these properties hold and where they don’t.

Solution: Note that R = k[z] @ y - k[z], and the hyperelliptic involution is the
automorphism o: (z,y) — (x,—y). By the course there are precisely two points
of X above the point z = oo of P}, and they are interchanged by o.

(a)=-(b): Consider A, B € k[z] with B # 0 such that A> — FB* = 1. Then in R
we have (A + yB)(A — yB) = 1. But that means that A+ yB € R ~\ k has the
inverse A — yB, proving (b).

(b)=(a): Consider A, B € k[z| such that A + yB is a unit in R but not in k*,
say with inverse A’ + yB’ for A’, B" € k[z]. Applying o we find that A — yB is
also a unit with inverse A’ — yB’. Taking products it follows that A2 — FB? is a
unit with inverse A”? — FB"2. But these are now elements of k[x], whose group of
units is £*; hence A? — FB? € k*. Since k is algebraically closed, we can write
A? — FB? = a? for some a € k*. After replacing (A, B) by (A/a, B/a) we get
A? — FB? = 1. Finally, if B = 0, we get AA’ = 1 with A, A’ € k[z], so that
A+yB = A€ k[z]* = k*, contrary to the assumption. Thus A, B satisfy (a).



(b)=(c): Consider any f € R* ~\ k*. Then the divisor of f is non-zero and trivial
on Spec R. Thus div(f) = ny P, +ns P, for some integers ny, ny which are not both
zero. Since any principal divisor has total degree 0, we must then in fact have
div(f) = n(P, — P») for some non-zero integer n. But that means that |n| times
that divisor class [P} — P, is the trivial divisor class.

(c)=(b): Suppose that n[P, — P,] = 0 in C1°(X) for some integer n > 0. Then
n(P, — Py) = div(f) for some non-zero f € K(X). This f then has no poles or
zeros in the chart Spec R; so both it and its inverse lie in R and hence in R*.
Since div(f) # 0, we also have f ¢ k™ and hence f € R* \ k*.

Constructing examples for both cases is not so easy. If k is the algebraic closure
of a finite field F, and F has coefficients in [, the divisor class [P — P,] always
has finite order. The reason is that C1°(X) = J(k) where .J is the jacobian variety
of X, and the class [P} — %] corresponds to a point in the finite subgroup J(F,).
But the way that the order of [P, — P depends on the coefficients of F' is very
complicated.

With some knowledge of elliptic curves one can construct examples for both cases
with ¢ = 1. Namely, take any curve E of genus 1 over k and any closed point F.
Then we have a bijection |E| — C1°(X), P+ [P — P,]. By solving some explicit
equations one can always produce a point P # Py such that [P — P has finite
order. By contrast, for most points that one writes down randomly one can prove
that [P — Fy] does not have finite order. In either case one then writes E as
a double cover of P, such that Py and P are precisely the two points above oo
(compare the solution to problem 4a below), so that (F, P, Py) = (X, Py, P») has
the desired property.

. Let k be an algebraically closed field of characteristic # 2. An elliptic curve is an
irreducible smooth projective curve of genus 1. Prove:

(a) Show that for any two distinct closed points P and @ on an elliptic curve F
there exists an automorphism o: E — E of order 2 with ¢(P) = Q.

(b) For any A € k~ {0,1} the curve E\ C P? that is given by the equation
ZY? = X(X - Z)(X — \2)
is an elliptic cuve.
(c) Show that any elliptic curve E is isomorphic to some such FE).
(d) Show that E\ = E, if and only if
pe{dn =AM
(e) The j-invariant of an elliptic curve E is the element

on oy (A=A 41)P



for any A € k with E) = E. Show that £ — j(E) induces a bijection from
the set of isomorphism classes of elliptic curves over k to k.

Solution: (a) This solution partly follows the proof of Lemma IV.4.2 in Hartshorne.
Consider the divisor D := P + Q. Then h'(X,Ox(D)) = 0, because deg D = 2 >
29(F) —2 = 0. Hence h°(X,0x(D)) = degD = 2, and so D induces a mor-
phism f : E — P; of degree 2 with f*oo = D. This morphism is separable,
because the characteristic is not 2. Therefore K(F) is Galois of degree 2 over
K(P}) = k(z). The induced involution o € Gal(K (E)/k(z)) then acts on X over
P} and interchanges P and Q.

(b) Same calculation as for general hyperelliptic curves in the course.

(c) Pick a closed point P € E and repeat the construction in (a) with the divisor
D :=2P. This yields a separable morphism f : E — P}, of degree 2 with f*oco =
2P. By the general formula for hyperelliptic curves from the course the curve F is
then given by an affine equation of the form y* = ¢(x) for a separable polynomial
¢ € k[z] of degree 3. After a linear substitution of the form = ~» ax +  we may
suppose that ¢ has the roots 0 and 1. After another substitution y ~» ~y this
yields the equation y*> = z(z — 1)(z — \) for some A\ € k~ {0,1}. Thus F = E,.

(d) As for any hyperelliptic curve, for any elliptic curve E the morphism F — Py
of degree 2 is unique up to an automorphism of P}. Thus the set of 4 branch
points in P; is unique up to Aut(P;). For E) this is the set {0,1,\,00}. Thus
we must show that there exists ¢ € Aut(P}) with ¢({0,1,\, 00}) = {0,1, u, 00}
if and only if p lies in the indicated set. Any such ¢ must map the points to
each other in one of |Sy| = 24 different ways. Recall that Aut(P}) = PGLy(k)
via Mobius transformations, and that any Mobius transformation is determined
by the images of three distinct points. Thus each case reduces to a quick finite
computation. The total calculation can be sped up a lot by exploiting the fact
that the possibilities for p are obtained from the Mébius transformations

1 t t—1
11—t t—1" t

1
tet, =, 1—t,
t

which form a subgroup G < Aut(P}) that is isomorphic to Ss.

(e) The group G acts faithfully on the rational function field k(t); hence k(t)/k(t)“
is a finite Galois extension with Galois group G. Direct computation shows that

the rational function ) 5
t“—t+1

) = CZ
t2(t —1)2

is G-invariant. The degree of the extension k(t)/k(j) is the maximum of the
degrees of the numerator and the denominator of j, which is 6. Since |G| = 6, we
deduce that k(t)¥ = k(j). Thus j corresponds to separable morphism P} — Pi
of degree 6. As the associated field extension is Galois, the Galois group acts



transitively on all fibers by the same argument as in the last lecture. Thus j
induces an injective map

(k~{0,1})/G = k, [A] = j(N).

To show that this is surjective, consider any j, € k. Since k is algebraically closed
of characteristic # 2, the equation 28(t> — ¢ +1)% — t*(t — 1)?j, = 0 has a solution
A € k. This solution cannot be 0 or 1; hence j(A) = jo. The map is therefore
surjective and hence bijective. Finally, (¢) and (d) imply that the isomorphism
classes of elliptic curves over k are in bijection with the set (k ~ {0,1})/G, so (e)
follows.

. Show that the hyperelliptic curve over C with the affine equation y? = 2® — « has
precisely 48 automorphisms.

Solution: Denote the curve by X and consider the morphism f : X — Pf,
(z,y) — z of degree 2. Since composition with automorphisms of P} yields all
morphisms X — P{ of degree 2, the group Aut,(X) acts on the ramification points
of f. Let P, ..., Py, Q1,Q2 be the ramification points over 1,7, —1, —i,0, 00 € P{,
respectively. The automorphisms defined as

(z,y) = (iz,y)
(z,y) = (1/z,iy/z%)

acton { P, ..., P,} as the dihedral group D, of order 8. The automorphism defined
as

(.flf, y) = (_;jjl_la (_i)l/QZI(m+1)3> )

with any choice of (—i)!/? has order 3 and acts nontrivially on the ramification
points. Furthermore the hyperelliptic involution acts on X and fixes all ram-
ification points. One checks that these automorphisms generate a subgroup of
Auty(X) of order 48.

On the other hand, as a hyperelliptic curve with 6 ramification points, X is a curve
of genus 2. By Hurwitz we thus have | Aut(X)| < 84(2 — 1) = 84. Since Aut(X)
already contains a subgroup of order 48 with 2 - 48 = 96 > 84, we conclude that
| Aut(X)| = 48.

. Let k be an algebraically closed field of characteristic p > 5 and consider the
hyperelliptic curve X of genus g given by

v =af — .

Show that | Aut(X)| = 2p(p? — 1) > 164°.



Solution: Consider the automorphisms

(z,y) = (z+ L y),
z,y) — (ax,V/ay for any o € F* and any square root in k%,
p

Yy
(z,y) — (‘1/% W) .

They act on the z-coordinate through the Mo6bius transformations associated to
the respective matrices

11 a 0 01

(01) (51) (10)
By a well-known exercise from Algebra I these matrices generate the group GLy(F,).
Since PGLy(F,) = GLo(F,)/F,’, we deduce that | PGLy(IF,)| = | GL2(F,)|/[F, | =
(p* — 1)(p* — p)/(p — 1) = p(p? — 1). In addition the hyperelliptic involution
(z,y) — (z,—y) acts trivially on the z-coordinate. Thus | Aut(X)| > 2p(p* — 1).
On the other hand, since p is odd, by the course we have p + 1 = 2¢g + 2. Thus
2p(p? — 1) > 16¢°.



