
D-MATH Algebraic Geometry II HS 2017
Prof. Richard Pink

Solutions 14
Hyperelliptic Curves, Coverings

1. Let k be a perfect field of characteristic p > 0.

(a) Let K be a finitely generated field extension of k of transcendence degree 1.
Prove that for any r ⩾ 1 the only purely inseparable extension of degree pr

of K is the overfield {x1/pr | x ∈ K}.
(b) Deduce that for every purely inseparable finite morphism of curves X → Y

over k we have g(X) = g(Y ).

Solution: (a) By induction on r the problem reduces to the case r = 1. Let
L := {x1/p | x ∈ K} within an algebraic closure of K; this is a purely inseparable
extension of K. Any inseparable extension E/K of degree p is generated by an
element of the form a1/p for some a ∈ K and hence contained in L. It therefore
suffices to prove that [L/K] = p.
For this choose t ∈ K transcendental over k such that [K/k(t)] is minimal. Then
t1/p ∈ L∖K, and so K(t1/p)/K is a subextension of L/K of degree p. It therefore
suffices to show that L = K(t1/p).
For this consider any a ∈ K. We compare the degrees of the following finite field
extensions within L:

k(t1/p, a1/p)

k(t1/p, a)

p
xx
xx
xx
xx
x

k(t, a) k(t1/p)

p
xx
xx
xx
xx
x

k(t)

On the one hand we have t1/p ̸∈ K and so t1/p ̸∈ k(t, a); hence k(t1/p, a)/k(t, a)
is inseparable of degree p, just as k(t1/p)/k(t). On the other hand, since k is
perfect, the Frobenius homomorphism x 7→ xp induces a commutative diagram
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with horizontal isomorphisms

k(t1/p, a1/p) ∼
( )p // k(t, a)

k(t1/p) ∼
( )p //

?�

OO

k(t).
?�

OO

Thus
[
k(t1/p, a1/p)/k(t1/p)

]
=

[
k(t, a)/k(t)

]
. The multiplicativity of degrees in

field extensions therefore implies that[
k(t1/p, a1/p)/k(t)

]
=

[
k(t1/p, a)/k(t)

]
.

Thus k(t1/p, a1/p) = k(t1/p, a) and hence a1/p ∈ k(t1/p, a) ⊂ K(t1/p). Since a was
arbitrary, it follows that L ⊂ K(t1/p) and hence L = K(t1/p), as desired.
(b) If X → Y is purely inseparable and finite, the corresponding field extension
K(X)/K(Y ) is purely inseparable of degree pr for some r ∈ Z⩾0. By (a) we
therefore have K(X)p

r
= K(Y ) and hence the following commutative diagram

K(Y ) K(X)
( )p

r

∼oo

k
?�

OO

k.
?�

OO

( )p
r

∼oo

Because K(Y ) is the pushout of this diagram, we obtain an isomorphism f :
K(X) ⊗k,( )pr k

∼−→ K(Y ). Let Frobpr : Spec k → Spec k be the automorphism
induced by the Frobenius ( )p

r
: k

∼−→ k. Then f corresponds to an isomorphism
of curves Y

∼−→ X ×Spec k,Frobpr Spec k. Thus g(X) = g(Y ) as the genus is stable
under flat base change.
Caution: The fields K(X) and K(Y ) are not necessarily isomorphic as field ex-
tensions of k. Their isomorphy as abstract fields does not yet prove (b), because
the genus is an invariant of a curve or of its function field over k.

2. Let k be an algebraically closed field of characteristic 2 and let g ⩾ 1. Show that
the smooth projective curve with the affine equation

y2 + y = x2g+1

is hyperelliptic of genus g. Hence there exist hyperelliptic curves of every genus
⩾ 1 in characteristic 2.
Solution: Set a(x, y) := y2+y−x2g+1. Since ∂a

∂y
= 1, the chart U := Spec k[x, y]/(a)

is nonsingular by the jacobian criterion. Next substitute x = s−1 and y = s−g−1t,
which transforms the equation into b(s, t) := t2 + sg+1t− s = 0. Here ∂b

∂t
= sg+1 is
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zero if and only if s is zero, in which case ∂b
∂s

= (g + 1)sgt − 1 is non-zero. Thus
the chart V := Spec k[s, t]/(b) is also nonsingular by the jacobian criterion. The
morphisms U → P1

k, (x, y) 7→ [x : 1] and V → P1
k, (s, t) 7→ [1 : s] glue to a finite

separable morphism f : U ∪V → P1
k of degree 2. Thus U ∪V is the desired smooth

projective curve X. To determine the genus of X note that

k[x, y]/(a) = k[x]⊕ k[x] · y and
k[s, t]/(b) = k[s]⊕ k[s] · t = k[x−1]⊕ k[x−1] · x−g−1y.

Together this shows that

f∗OX = OP1
k
⊕OP1

k
(−(g + 1)∞) · y.

Thus X has genus

h1(X,OX) = h1(P1
k, f∗OX) = h1(P1

k,OP1
k
) + h1(P1

k,OP1
k
(−(g + 1)∞)) = 0 + g = g.

3. Let F ∈ k[x] be a separable polynomial of even degree ⩾ 2 over an algebraically
closed field k with char k ̸= 2. Let X be the smooth projective curve over k with
the affine equation y2 = F (x) and let R := k[x, y]/(y2 − F (x)). Show that the
following properties are equivalent:

(a) There exist A,B ∈ k[x] with B ̸= 0 such that A2 − FB2 = 1.
(b) R× ̸= k×.
(c) Let P1, P2 ∈ X be the two points at infinity where x has a pole. Then the

divisor class [P1 − P2] ∈ Cl0(X) is an element of finite order.
∗∗Give examples where these properties hold and where they don’t.
Solution: Note that R = k[x] ⊕ y · k[x], and the hyperelliptic involution is the
automorphism σ : (x, y) 7→ (x,−y). By the course there are precisely two points
of X above the point x = ∞ of P1

k, and they are interchanged by σ.
(a)⇒(b): Consider A,B ∈ k[x] with B ̸= 0 such that A2 − FB2 = 1. Then in R
we have (A + yB)(A − yB) = 1. But that means that A + yB ∈ R ∖ k has the
inverse A− yB, proving (b).
(b)⇒(a): Consider A,B ∈ k[x] such that A + yB is a unit in R but not in k×,
say with inverse A′ + yB′ for A′, B′ ∈ k[x]. Applying σ we find that A − yB is
also a unit with inverse A′ − yB′. Taking products it follows that A2 − FB2 is a
unit with inverse A′2 − FB′2. But these are now elements of k[x], whose group of
units is k×; hence A2 − FB2 ∈ k×. Since k is algebraically closed, we can write
A2 − FB2 = a2 for some a ∈ k×. After replacing (A,B) by (A/a,B/a) we get
A2 − FB2 = 1. Finally, if B = 0, we get AA′ = 1 with A,A′ ∈ k[x], so that
A+ yB = A ∈ k[x]× = k×, contrary to the assumption. Thus A,B satisfy (a).
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(b)⇒(c): Consider any f ∈ R×∖k×. Then the divisor of f is non-zero and trivial
on SpecR. Thus div(f) = n1P1+n2P2 for some integers n1, n2 which are not both
zero. Since any principal divisor has total degree 0, we must then in fact have
div(f) = n(P1 − P2) for some non-zero integer n. But that means that |n| times
that divisor class [P1 − P2] is the trivial divisor class.
(c)⇒(b): Suppose that n[P1 − P2] = 0 in Cl0(X) for some integer n > 0. Then
n(P1 − P2) = div(f) for some non-zero f ∈ K(X). This f then has no poles or
zeros in the chart SpecR; so both it and its inverse lie in R and hence in R×.
Since div(f) ̸= 0, we also have f ̸∈ k× and hence f ∈ R× ∖ k×.
Constructing examples for both cases is not so easy. If k is the algebraic closure
of a finite field Fq and F has coefficients in Fq, the divisor class [P1 − P2] always
has finite order. The reason is that Cl0(X) ∼= J(k) where J is the jacobian variety
of X, and the class [P1 − P2] corresponds to a point in the finite subgroup J(Fq).
But the way that the order of [P1 − P2] depends on the coefficients of F is very
complicated.
With some knowledge of elliptic curves one can construct examples for both cases
with g = 1. Namely, take any curve E of genus 1 over k and any closed point P0.
Then we have a bijection |E| → Cl0(X), P 7→ [P − P0]. By solving some explicit
equations one can always produce a point P ̸= P0 such that [P − P0] has finite
order. By contrast, for most points that one writes down randomly one can prove
that [P − P0] does not have finite order. In either case one then writes E as
a double cover of P1

k such that P0 and P are precisely the two points above ∞
(compare the solution to problem 4a below), so that (E,P, P0) = (X,P1, P2) has
the desired property.

4. Let k be an algebraically closed field of characteristic ̸= 2. An elliptic curve is an
irreducible smooth projective curve of genus 1. Prove:

(a) Show that for any two distinct closed points P and Q on an elliptic curve E
there exists an automorphism σ : E → E of order 2 with σ(P ) = Q.

(b) For any λ ∈ k ∖ {0, 1} the curve Eλ ⊂ P2
k that is given by the equation

ZY 2 = X(X − Z)(X − λZ)

is an elliptic cuve.
(c) Show that any elliptic curve E is isomorphic to some such Eλ.
(d) Show that Eλ

∼= Eµ if and only if

µ ∈
{
λ, 1

λ
, 1− λ, 1

1−λ
, λ
λ−1

, λ−1
λ

}
.

(e) The j-invariant of an elliptic curve E is the element

j(E) := 28 · (λ
2 − λ+ 1)3

λ2(λ− 1)2
∈ k
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for any λ ∈ k with Eλ
∼= E. Show that E 7→ j(E) induces a bijection from

the set of isomorphism classes of elliptic curves over k to k.

Solution: (a) This solution partly follows the proof of Lemma IV.4.2 in Hartshorne.
Consider the divisor D := P +Q. Then h1(X,OX(D)) = 0, because degD = 2 >
2g(E) − 2 = 0. Hence h0(X,OX(D)) = degD = 2, and so D induces a mor-
phism f : E → P1

k of degree 2 with f ∗∞ = D. This morphism is separable,
because the characteristic is not 2. Therefore K(E) is Galois of degree 2 over
K(P1

k) = k(x). The induced involution σ ∈ Gal(K(E)/k(x)) then acts on X over
P1
k and interchanges P and Q.

(b) Same calculation as for general hyperelliptic curves in the course.
(c) Pick a closed point P ∈ E and repeat the construction in (a) with the divisor
D := 2P . This yields a separable morphism f : E → P1

k of degree 2 with f ∗∞ =
2P . By the general formula for hyperelliptic curves from the course the curve E is
then given by an affine equation of the form y2 = c(x) for a separable polynomial
c ∈ k[x] of degree 3. After a linear substitution of the form x ⇝ αx + β we may
suppose that c has the roots 0 and 1. After another substitution y ⇝ γy this
yields the equation y2 = x(x− 1)(x− λ) for some λ ∈ k ∖ {0, 1}. Thus E ∼= Eλ.
(d) As for any hyperelliptic curve, for any elliptic curve E the morphism E → P1

k

of degree 2 is unique up to an automorphism of P1
k. Thus the set of 4 branch

points in P1
k is unique up to Aut(P1

k). For Eλ this is the set {0, 1, λ,∞}. Thus
we must show that there exists φ ∈ Aut(P1

k) with φ({0, 1, λ,∞}) = {0, 1, µ,∞}
if and only if µ lies in the indicated set. Any such φ must map the points to
each other in one of |S4| = 24 different ways. Recall that Aut(P1

k)
∼= PGL2(k)

via Möbius transformations, and that any Möbius transformation is determined
by the images of three distinct points. Thus each case reduces to a quick finite
computation. The total calculation can be sped up a lot by exploiting the fact
that the possibilities for µ are obtained from the Möbius transformations

t 7→ t,
1

t
, 1− t,

1

1− t
,

t

t− 1
,
t− 1

t

which form a subgroup G < Aut(P1
k) that is isomorphic to S3.

(e) The group G acts faithfully on the rational function field k(t); hence k(t)/k(t)G
is a finite Galois extension with Galois group G. Direct computation shows that
the rational function

j(t) := 28 · (t
2 − t+ 1)3

t2(t− 1)2

is G-invariant. The degree of the extension k(t)/k(j) is the maximum of the
degrees of the numerator and the denominator of j, which is 6. Since |G| = 6, we
deduce that k(t)G = k(j). Thus j corresponds to separable morphism P1

k → P1
k

of degree 6. As the associated field extension is Galois, the Galois group acts
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transitively on all fibers by the same argument as in the last lecture. Thus j
induces an injective map

(k ∖ {0, 1})/G ↪→ k, [λ] 7→ j(λ).

To show that this is surjective, consider any j0 ∈ k. Since k is algebraically closed
of characteristic ̸= 2, the equation 28(t2 − t+ 1)3 − t2(t− 1)2j0 = 0 has a solution
λ ∈ k. This solution cannot be 0 or 1; hence j(λ) = j0. The map is therefore
surjective and hence bijective. Finally, (c) and (d) imply that the isomorphism
classes of elliptic curves over k are in bijection with the set (k ∖ {0, 1})/G, so (e)
follows.

5. Show that the hyperelliptic curve over C with the affine equation y2 = x5 − x has
precisely 48 automorphisms.
Solution: Denote the curve by X and consider the morphism f : X → P1

C,
(x, y) 7→ x of degree 2. Since composition with automorphisms of P1

C yields all
morphisms X → P1

C of degree 2, the group Autk(X) acts on the ramification points
of f . Let P1, . . . , P4, Q1, Q2 be the ramification points over 1, i,−1,−i, 0,∞ ∈ P1

C,
respectively. The automorphisms defined as

(x, y) 7→ (ix, y)

(x, y) 7→ (1/x, iy/x3)

act on {P1, . . . , P4} as the dihedral group D4 of order 8. The automorphism defined
as

(x, y) 7→
(

−ix+1
x+1

, y
(−i)1/2(x+1)3

)
,

with any choice of (−i)1/2 has order 3 and acts nontrivially on the ramification
points. Furthermore the hyperelliptic involution acts on X and fixes all ram-
ification points. One checks that these automorphisms generate a subgroup of
Autk(X) of order 48.
On the other hand, as a hyperelliptic curve with 6 ramification points, X is a curve
of genus 2. By Hurwitz we thus have |Aut(X)| ⩽ 84(2 − 1) = 84. Since Aut(X)
already contains a subgroup of order 48 with 2 · 48 = 96 > 84, we conclude that
|Aut(X)| = 48.

6. Let k be an algebraically closed field of characteristic p ⩾ 5 and consider the
hyperelliptic curve X of genus g given by

y2 = xp − x.

Show that |Aut(X)| ⩾ 2p(p2 − 1) > 16g3.
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Solution: Consider the automorphisms

(x, y) 7→ (x+ 1, y),

(x, y) 7→ (αx,
√
α y) for any α ∈ F×

p and any square root in k×,

(x, y) 7→
(
−1/x,

y

x(p+1)/2

)
.

They act on the x-coordinate through the Möbius transformations associated to
the respective matrices(

1 1
0 1

)
,

(
α 0
0 1

)
,

(
0 1
1 0

)
.

By a well-known exercise from Algebra I these matrices generate the group GL2(Fp).
Since PGL2(Fp) = GL2(Fp)/F×

p , we deduce that |PGL2(Fp)| = |GL2(Fp)|/|F×
p | =

(p2 − 1)(p2 − p)/(p − 1) = p(p2 − 1). In addition the hyperelliptic involution
(x, y) 7→ (x,−y) acts trivially on the x-coordinate. Thus |Aut(X)| ⩾ 2p(p2 − 1).
On the other hand, since p is odd, by the course we have p + 1 = 2g + 2. Thus
2p(p2 − 1) > 16g3.
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