Solutions 2

Coherent and Quasi-Coherent Sheaves

Convention: Let $f: X \to Y$ be a morphism of schemes. Let \mathcal{F} be an \mathcal{O}_X -module and let \mathcal{G} be an \mathcal{O}_Y -module. We will often refer to the direct (resp. inverse) image sheaf $f_*\mathcal{F}$ (resp. $f^*\mathcal{G}$) as the pushforward of \mathcal{F} (resp. pullback of \mathcal{G}).

Fix a locally noetherian scheme X.

1. Let $\mathcal{I} \subset \mathcal{O}_X$ be a quasi-coherent sheaf of ideals that is locally free as an \mathcal{O}_X -module. Show that \mathcal{I} is an invertible \mathcal{O}_X -module, unless ... what?

Solution: Let U be a non-empty open affine subscheme of X such that $\mathcal{I}|_U$ is free. Then $U = \operatorname{Spec} A$ and $\mathcal{I} = \tilde{I}$ for an ideal $I \subset A$ and $I \cong A^{(S)}$ as an A-module for some set S. Here $S = \emptyset$ if and only if I = 0, which is of course possible. If |S| = 1, then $\mathcal{I}|_U$ is free of rank 1, hence invertible. We claim that these are the only possible cases.

Since A is non-zero, it possesses a minimal prime ideal \mathfrak{p} . Then $A_{\mathfrak{p}}$ is a local ring with precisely one prime ideal $\mathfrak{p}_{\mathfrak{p}}$. If $S \neq \emptyset$, the ideal $I_{\mathfrak{p}} \subset A_{\mathfrak{p}}$ contains an element x such that the map $A_{\mathfrak{p}} \to A_{\mathfrak{p}}x$, $y \mapsto yx$ is an isomorphism. Thus x is not a zero divisor of $A_{\mathfrak{p}}$; hence there exists a prime ideal $\mathfrak{q} \subset A_{\mathfrak{p}}$ with $x \notin \mathfrak{q}$. Then $\mathfrak{q} = \mathfrak{p}_{\mathfrak{p}}$; hence $x \in A_{\mathfrak{p}} \setminus \mathfrak{p}_{\mathfrak{p}} = A_{\mathfrak{p}}^{\times}$. Therefore $I_{\mathfrak{p}} = A_{\mathfrak{p}}$, which is a free $A_{\mathfrak{p}}$ -module of rank 1 as well as of rank |S|; hence |S| = 1, as desired.

Varying U the above claim implies that X is the disjoint union of two open subschemes X_0 and X_1 such that $\mathcal{I}|_{X_0} = 0$ and $\mathcal{I}|_{X_1}$ is invertible. An appropriate answer is therefore that \mathcal{I} is invertible precisely if $\mathcal{I}_x \neq 0$ for all $x \in X$.

(If X is locally noetherian, one can also argue as follows: Since A is noetherian, the local ring $A_{\mathfrak{p}}$ is non-zero artinian, hence of finite positive length, say ℓ . The length of $I_{\mathfrak{p}}$ is thus $\leq \ell$, but since $I_{\mathfrak{p}} \cong A_{\mathfrak{p}}^{(S)}$, it is also = $|S| \cdot \ell$. Therefore $|S| \leq 1$.)

*2. For any short exact sequence of \mathcal{O}_X -modules $0 \to \mathcal{F}' \to \mathcal{F} \to \mathcal{F}'' \to 0$, show that if two of $\mathcal{F}', \mathcal{F}, \mathcal{F}''$ are quasi-coherent, resp. coherent, so is the third.

Solution: See Hartshorne, Proposition II.5.7.

3. Show that if \mathcal{F} and \mathcal{G} are coherent \mathcal{O}_X -modules, so is $\mathscr{H}om_{\mathcal{O}_X}(\mathcal{F},\mathcal{G})$.

Solution: Since the question is local, we may assume that $X = \operatorname{Spec} A$ is affine, and that $\mathcal{F} = \tilde{M}$ and $\mathcal{G} = \tilde{N}$, where M and N are finitely generated A-modules. By part (a) of Sheet 1, exercise 5, we have $\mathscr{H}om_{\mathcal{O}_X}(\tilde{M}, \tilde{N}) \cong (\operatorname{Hom}_A(M, N))^{\sim}$. We are thus reduced to showing that $\operatorname{Hom}_A(M, N)$ is finitely generated as an A-module. For this we observe that $M \cong A^n/N$ for some $n \in \mathbb{Z}^{\geq 0}$ and some submodule $L \subset A^n$. Thus $\operatorname{Hom}_A(M, N) \cong \operatorname{Hom}_A(A^n/L, N)$. By the left exactness of Hom the latter is an A-submodule of $\operatorname{Hom}_A(A^n, N) \cong N^n$, which is itself finitely generated. Since we assumed A is noetherian, every submodule of a finitely generated module is also finitely generated, and the desired result follows.

4. Consider a morphism $f: X \to Y$. Is there a natural homomorphism between $(f_*\mathcal{E}) \otimes_{\mathcal{O}_Y} (f_*\mathcal{F})$ and $f_*(\mathcal{E} \otimes_{\mathcal{O}_X} \mathcal{F})$? When is it an isomorphism?

Solution: There is a natural homomorphism, defined as follows: For any open $V \subset Y$ there is a natural homomorphism

$$\mathcal{E}(f^{-1}(V)) \otimes_{\mathcal{O}_Y(V)} \mathcal{F}(f^{-1}(V)) \to \mathcal{E}(f^{-1}(V)) \otimes_{\mathcal{O}_X(f^{-1}(V))} \mathcal{F}(f^{-1}(V))$$
$$s \otimes t \mapsto s \otimes t.$$

Composing this with the sheafification morphism to $(\mathcal{E} \otimes_{\mathcal{O}_X} \mathcal{F})(f^{-1}(V))$, we obtain a morphism of presheaves $((f_*\mathcal{E}) \otimes_{\mathcal{O}_Y} (f_*\mathcal{F}))_{pre} \to f_*(\mathcal{E} \otimes_{\mathcal{O}_X} \mathcal{F})$, and the universal property of sheafification yields the desired morphism

$$\alpha \colon (f_*\mathcal{E}) \otimes_{\mathcal{O}_Y} (f_*\mathcal{F}) \to f_*(\mathcal{E} \otimes_{\mathcal{O}_X} \mathcal{F}).$$

This is not usually an isomorphism. Let $X = \operatorname{Spec} B$ and $Y = \operatorname{Spec} A$ and suppose $\mathcal{E} = \mathcal{F} = \mathcal{O}_X$. The morphism f corresponds to a homomorphism $f^{\flat} \colon A \to B$, making B into an A-algebra. For a B-module M, we write $M|_A$ for M as an A-module. Then $(f_*\mathcal{E}) \otimes_{\mathcal{O}_Y} (f_*\mathcal{F}) \cong (B|_A \otimes_A B|_A)^{\sim}$ and $f_*(\mathcal{E} \otimes_{\mathcal{O}_X} \mathcal{F}) \cong$ $((B \otimes_B B)|_A)^{\sim} \cong (B|_A)^{\sim}$. Thus α being an isomorphism is equivalent to $B|_A \otimes_A B|_A \cong B|_A \cong B|_A$. A typical counterexample is $\mathbb{C} \otimes_{\mathbb{R}} \mathbb{C} \cong \mathbb{C} \times \mathbb{C} \ncong \mathbb{C}$.

We claim that α is an isomorphism if f is a closed embedding. Indeed, since the question is local, we may reduce to the case where $Y = \operatorname{Spec} A$ and $X = \operatorname{Spec} A/I$ for some ideal $I \subset A$. We may assume further that $\mathcal{E} = \tilde{M}$ and $\mathcal{F} = \tilde{N}$, for A/I-modules M and N. Then α corresponds to the natural isomorphism $M \otimes_A N \xrightarrow{\sim} M \otimes_{A/I} N$, $m \otimes n \mapsto m \otimes n$.

5. Let $f: X \to Y$ be a morphism of schemes, and let \mathcal{G} and \mathcal{G}' be two \mathcal{O}_Y -modules. Define a natural homomorphism of \mathcal{O}_X -modules

$$\alpha \colon f^* \mathscr{H}om_{\mathcal{O}_Y}(\mathcal{G}, \mathcal{G}') \to \mathscr{H}om_{\mathcal{O}_X}(f^* \mathcal{G}, f^* \mathcal{G}'),$$

functorial in \mathcal{G} and \mathcal{G}' . Show that α is an isomorphism if \mathcal{G} is locally free of finite rank.

Solution: By adjunction, defining α is equivalent to defining a morphism

$$\beta\colon \mathscr{H}om_{\mathcal{O}_Y}(\mathcal{G},\mathcal{G}')\to f_*\mathscr{H}om_{\mathcal{O}_X}(f^*\mathcal{G},f^*\mathcal{G}')$$

Let $V \subset Y$ be open, and let $U := f^{-1}(V)$. We have

$$f_*\mathscr{H}om_{\mathcal{O}_X}(f^*\mathcal{G}, f^*\mathcal{G}')(V) = \operatorname{Hom}_{\mathcal{O}_U}(f^*\mathcal{G}|_U, f^*\mathcal{G}'|_U).$$

Consider the following commutative diagram:

$$U \xrightarrow{i} X$$
$$\left| \begin{array}{c} \downarrow \\ \overline{f} & f \\ V \xrightarrow{j} Y, \end{array} \right|$$

where i and j are the natural inclusions and $\overline{f} := f|_U$. Then we have

$$f^*\mathcal{G}|_U = i^*(f^*\mathcal{G}) \cong (f \circ i)^*\mathcal{G} = (j \circ \overline{f})^*\mathcal{G} \cong \overline{f}^*(j^*\mathcal{G}) = \overline{f}^*(\mathcal{G}|_V)$$

and similarly for \mathcal{G}' . Thus there exists a natural isomorphism

$$\varphi \colon \operatorname{Hom}_{\mathcal{O}_U}(\overline{f}^*(\mathcal{G}|_V), \overline{f}^*(\mathcal{G}'|_V)) \xrightarrow{\sim} f_*\mathscr{H}om_{\mathcal{O}_X}(f^*\mathcal{G}, f^*\mathcal{G}')(V).$$

Since \overline{f}^* is a functor, there is a natural map

 $\tilde{\beta}_V \colon \operatorname{Hom}_{\mathcal{O}_V}(\mathcal{G}|_V, \mathcal{G}'|_V) \to \operatorname{Hom}_{\mathcal{O}_U}(\overline{f}^*(\mathcal{G}|_V), \overline{f}^*(\mathcal{G}'|_V)).$

This is in fact a morphism of $\mathcal{O}_Y(V)$ -modules and is compatible with restriction. We define $\beta_V := \varphi \circ \tilde{\beta}_V$. Varying V, we obtain the desired morphism of sheaves β .

We turn to the question of showing α is an isomorphism when \mathcal{G} is locally free of finite rank. Since the question is local on the base, we reduce to the case where $\mathcal{G} = \mathcal{O}_Y^n$ for $n \in \mathbb{Z}^{\geq 0}$. The case n = 0 is trivial. For $n \geq 1$, we first use the fact that $\mathscr{H}om$, f^* , and f_* all commute with finite sums to reduce to the case where n = 1. In this case we have natural isomorphisms $f^*\mathscr{H}om_{\mathcal{O}_Y}(\mathcal{O}_Y, \mathcal{G}') \cong f^*\mathcal{G}'$ and $\mathscr{H}om_{\mathcal{O}_X}(f^*\mathcal{O}_Y, f^*\mathcal{G}') \cong f^*\mathcal{G}'$, where we have used Sheet 1, exercise 2b and the fact that $f^*\mathcal{O}_Y \cong \mathcal{O}_X$. So we at least know that both sides are isomorphic. To see that α is itself an isomorphism, we use similar identifications to show that β corresponds to the adjunction $\mathcal{G}' \to f_*f^*\mathcal{G}'$. It follows that α corresponds to the identity on $f^*\mathcal{G}'$ (by definition of the adjunction morphism) and is thus an isomorphism.

Note: Showing α is an isomorphism is **not** equivalent to showing β is an isomorphism.

- 6. Prove that for any noetherian scheme X:
 - (a) Suppose X is affine. Prove that any quasi-coherent sheaf on X is a sum of coherent subsheaves.
 - (b) For general X, show that any coherent sheaf on an open subscheme of X is the restriction of a coherent sheaf on X.

**(c) Prove (a) for general X.

Hint: For (b), first prove the affine case. For the embedding $j : U \hookrightarrow X$ and a coherent sheaf \mathcal{F} on U look at the sheaf $j_*\mathcal{F}$.

Solution:

(a) When X = Spec A, then the statement translates to the following fact: An A-module M is the sum of its finitely generated submodules. This is clear since any $m \in M$ is contained in the submodule $A \cdot m \subset M$. We return to the case of general X after proving part (b).

(b) Suppose X = Spec A. Let $U \subset X$ be open and let \mathcal{F} be a coherent sheaf on U. Since U is noetherian, we may apply Proposition II.5.8 in Hartshorne or Problem 3 of Sheet 3 to deduce that $j_*\mathcal{F}$ is quasi-coherent on X. By part (a), we have that $j_*\mathcal{F}$ is the sum of its coherent subsheaves, i.e. $j_*\mathcal{F} = \sum_{i\in I} \mathcal{G}_i$, where \mathcal{G}_i runs over all coherent subsheaves of $j_*\mathcal{F}$. We note that j^* is exact in this case since it corresponds to the exact functor $\mathcal{G} \mapsto \mathcal{G}|_U$. Thus j^* preserves inclusion, so the $j^*\mathcal{G}_i$ are subsheaves of $j^*j_*\mathcal{F}$. The sum $\sum_{i\in I} \mathcal{G}_i$ is defined to be the image of the morphism $\bigoplus \mathcal{G}_i \to j_*\mathcal{F}$. Applying j^* and noting that it commutes with direct sums, we see that $j^*j_*\mathcal{F} = \sum_{i\in I} j^*\mathcal{G}_i$. Since the pullback of a coherent sheaf via a morphism of noetherian schemes is again coherent, the $j^*\mathcal{G}_i$ are coherent on U. We have thus written $j^*j_*\mathcal{F}$ as the sum of coherent subsheaves $j^*\mathcal{G}_i$.

Since j is an open embedding the adjunction $j^*j_*\mathcal{F} \to \mathcal{F}$ is an isomorphism. In particular, the sheaf $j^*j_*\mathcal{F}$ is coherent on U. Let $U = \bigcup_{k=1}^n (U_k := \operatorname{Spec} A_k)$ be a finite affine open covering of U. Taking sections over U_k , the equality $j^*j_*\mathcal{F} = \sum_{i \in I} j^*\mathcal{G}_i$ yields an equality $M_k = \sum_{i \in I} M_{ik}$ where M_k is a finitely generated A_k module and the $M_{ik} \subset M_k$ are submodules. Any generator of M_k is contained in some finite sum of the M_{ik} . Since the \mathcal{G}_i include all coherent subsheaves of $j_*\mathcal{F}$, it follows that any finite sum of the \mathcal{G}_i is equal to \mathcal{G}_j for some $j \in I$. Putting everything together and using that M_k is finitely generated, we find that $M_k = M_{ik}$ for some $i \in I$. Since there are finitely many U_k , we may choose an i that works for all of them. This implies that $j^*j_*\mathcal{F} = j^*\mathcal{G}_i$. From the adjunction we obtain $j^*\mathcal{G}_i \cong \mathcal{F}$. Thus proves (b) in the affine case.

Now let X be an arbitrary noetherian scheme. Cover X with finitely many affine U_1, \ldots, U_n . Let $\mathcal{F}_1 := \mathcal{F}|_{U \cap U_1}$. By the affine case, we know that \mathcal{F}_1 extends to a coherent sheaf \mathcal{F}'_1 on U_1 . Since $\mathcal{F}'_1|_{U \cap U_1} = \mathcal{F}|_{U \cap U_1}$, we may glue \mathcal{F} and \mathcal{F}'_1 to obtain a coherent sheaf \mathcal{F}' over $U \cup U_1$ extending \mathcal{F} . We may repeat this argument with U_2 in place of U_1 and $(U_1 \cup U) \cap U_2$ in place of $U \cap U_1$ and \mathcal{F}' in place of \mathcal{F} to obtain a coherent sheaf \mathcal{F}'' on $U_2 \cup U_1 \cup U$ extending \mathcal{F} . Iterating yields the desired extension of \mathcal{F} to a coherent sheaf on X.

We will not give a proof of (c). There are several questions related to this exercise that one can ask:

- i. If \mathcal{F} is quasicoherent on U, does there exist a quasicoherent sheaf \mathcal{G} on X such that $\mathcal{G}|_U \cong \mathcal{F}$?
- ii. If \mathcal{F} is coherent on U, does there exist a coherent sheaf \mathcal{G} on X such that $\mathcal{G}|_U \cong \mathcal{F}$?
- iii. If \mathcal{G} is quasicoherent on X such that \mathcal{F} is a coherent subsheaf of $\mathcal{G}|_U$, does there exist a coherent subsheaf \mathcal{F}' of \mathcal{G} such that $\mathcal{F} = \mathcal{F}'|_U$?
- iv. Is every quasicoherent sheaf on X the sum of its coherent subsheaves?

We have just answered the first and second questions affirmatively. The third and forth are related as follows: Let X be a noetherian scheme and let \mathcal{G} be a quasicoherent sheaf on X. Let $\{\mathcal{G}_i\}_{i\in I}$ denote the set of coherent subsheaves of \mathcal{G} . There is a natural inclusion $\iota: \sum_{i\in I} \mathcal{G}_i \hookrightarrow \mathcal{G}$. For each affine open $U \subset X$, consider the induced inclusion $(\sum_{i\in I} \mathcal{G}_i)|_U = \sum_{i\in I} (\mathcal{G}_i|_U) \hookrightarrow \mathcal{G}|_U$. If this is an isomorphism for every such U, then ι is as well. Since we have shown that $\mathcal{G}|_U$ is the sum of its coherent subsheaves, it suffices to show that each such subsheaf is equal to $\mathcal{G}_i|_U$ for some i. This is where (iii) is important. A priori we just know that $\mathcal{G}_i|_U$ extends to some coherent sheaf on X, but our construction doesn't yield a subsheaf of \mathcal{G} .

If we want to show (iii) in the affine case, we can look at $j_*\mathcal{F} \subset j_*j^*\mathcal{G}$. We know there is a coherent $\mathcal{F}' \subset j_*\mathcal{F}$ extending \mathcal{F} . We also have the adjunction morphism $\rho: \mathcal{G} \to j_*j^*\mathcal{G}$. We have $\rho^{-1}(\mathcal{F}')|_U = \mathcal{F}$ since $\rho|_U$ is an isomorphism. A similar gluing as in part (b) may resolve the general case.