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Solutions 2

COHERENT AND QUASI-COHERENT SHEAVES

Convention: Let f: X — Y be a morphism of schemes. Let F be an Ox-module and
let G be an Oy-module. We will often refer to the direct (resp. inverse) image sheaf
f«F (resp. f*G) as the pushforward of F (resp. pullback of G).

Fix a locally noetherian scheme X.

1.

*2.

Let Z C Ox be a quasi-coherent sheaf of ideals that is locally free as an Ox-
module. Show that 7 is an invertible Ox-module, unless ... what?

Solution: Let U be a non-empty open affine subscheme of X such that Z|y is
free. Then U = Spec A and Z = I for an ideal I € A and I = A®) as an A-module
for some set S. Here S = @ if and only if I = 0, which is of course possible. If
|S| = 1, then Z|y is free of rank 1, hence invertible. We claim that these are the
only possible cases.

Since A is non-zero, it possesses a minimal prime ideal p. Then A, is a local ring
with precisely one prime ideal p,. If S # &, the ideal I, C A, contains an element
x such that the map A, — A,x, y — yx is an isomorphism. Thus z is not a zero
divisor of Ay; hence there exists a prime ideal g C A, with € q. Then q = p,;
hence z € A, \ p, = A;. Therefore I, = A, which is a free Ay-module of rank 1
as well as of rank |S|; hence |S| = 1, as desired.

Varying U the above claim implies that X is the disjoint union of two open sub-
schemes X, and X; such that Z|x, = 0 and Z|x, is invertible. An appropriate
answer is therefore that Z is invertible precisely if Z, # 0 for all z € X.

(If X is locally noetherian, one can also argue as follows: Since A is noetherian,
the local ring A, is non-zero artinian, hence of finite positive length, say ¢. The

length of I, is thus < ¢, but since I, = AI(JS), it is also = | S| - ¢. Therefore |S| < 1.)
For any short exact sequence of Ox-modules 0 -+ 7 — F — F” — 0, show that
if two of F', F, F" are quasi-coherent, resp. coherent, so is the third.

Solution: See Hartshorne, Proposition 11.5.7.

Show that if 7 and G are coherent Ox-modules, so is #ome, (F,G).

Solution: Since the question is local, we may assume that X = Spec A is affine,
and that F = M and G = N, where M and N are finitely generated A-modules. By
part (a) of Sheet 1, exercise 5, we have #ome, (M, N) = (Homa(M, N))~. We are
thus reduced to showing that Hom4 (M, N) is finitely generated as an A-module.

1



For this we observe that M = A"/N for some n € Z7° and some submodule
L C A™. Thus Homu (M, N) = Homa(A"/L, N). By the left exactness of Hom the
latter is an A-submodule of Hom 4(A™, N) = N, which is itself finitely generated.
Since we assumed A is noetherian, every submodule of a finitely generated module
is also finitely generated, and the desired result follows.

. Consider a morphism f: X — Y. Is there a natural homomorphism between

(f:€) ®oy (fuF) and fi(€ ®o, F)? When is it an isomorphism?

Solution: There is a natural homomorphism, defined as follows: For any open
V C Y there is a natural homomorphism

E(fTIV)) @oy vy FUFTHV)) = E(FTHV)) @oxr10y F(FHV))
SRt — s&t.

Composing this with the sheafification morphism to (£ ®o, F)(f~1(V)), we obtain
a morphism of presheaves ((f.£) ®o, (f*]:))pre — fo(E®0, F), and the universal
property of sheafification yields the desired morphism

a: (fu€) oy (fiF) = [(€ ®oy F).

This is not usually an isomorphism. Let X = SpecB and Y = Spec A and
suppose & = F = Ox. The morphism f corresponds to a homomorphism f°: A —
B, making B into an A-algebra. For a B-module M, we write M|4 for M as
an A-module. Then (f.€) ®o, (fiF) = (Bla ®4 Bla)" and f.(€ ®o, F) =
(B®p B)|a)” = (B|a)”. Thus a being an isomorphism is equivalent to B|4 ®4
B|a = Bla. A typical counterexample is C®g C = C x C 22 C.

We claim that « is an isomorphism if f is a closed embedding. Indeed, since the
question is local, we may reduce to the case where Y = Spec A and X = Spec A/[
for some ideal I C A. We may assume further that £ = M and F = N, for A/I-
modules M and N. Then a corresponds to the natural isomorphism M @4 N =
M &4/ N, m®@n— m&n.

. Let f: X — Y be a morphism of schemes, and let G and G’ be two Oy-modules.
Define a natural homomorphism of Ox-modules

a: f*Home, (G,G') — Homo, (f*G, f*G'),

functorial in G and G’. Show that « is an isomorphism if G is locally free of finite
rank.

Solution: By adjunction, defining « is equivalent to defining a morphism

B: Home, (G,G') = fudbomo, (f*G, f*G').



Let V C Y be open, and let U := f~1(V). We have

f*%omox (f*g’ f*g/>(V) = HOIH@U (f*g|U7 f*g/|U)

Consider the following commutative diagram:

U—ts X

o

veloy,
where i and j are the natural inclusions and f := f|y. Then we have
fGlu =i (fG) = (foi)G=(jof)d=F (") = F(Glv)
and similarly for G’. Thus there exists a natural isomorphism
1 Homoy, (F(Glv), I'(G'lv)) = forbomoy (f°G, [*G)V).

Since f is a functor, there is a natural map

By Homo, (Glv,G'|v) = Homo, (f (Glv), f (G'Iv)).

This is in fact a morphism of Oy (V)-modules and is compatible with restriction.
We define [y := po fy. Varying V, we obtain the desired morphism of sheaves (.

We turn to the question of showing « is an isomorphism when G is locally free of
finite rank. Since the question is local on the base, we reduce to the case where
G =0y forn e Z7°. The case n = 0 is trivial. For n > 1, we first use the fact
that J¢om, f*, and f, all commute with finite sums to reduce to the case where
n = 1. In this case we have natural isomorphisms f*#ome, (Oy,G’) = f*G’ and
Homo, (f*Oy, f*G") = f*G', where we have used Sheet 1, exercise 2b and the
fact that f*Oy = Ox. So we at least know that both sides are isomorphic. To
see that « is itself an isomorphism, we use similar identifications to show that
B corresponds to the adjunction G' — f,f*G’. It follows that a corresponds to
the identity on f*G’ (by definition of the adjunction morphism) and is thus an
isomorphism.

Note: Showing « is an isomorphism is not equivalent to showing £ is an isomor-
phism.
6. Prove that for any noetherian scheme X:
(a) Suppose X is affine. Prove that any quasi-coherent sheaf on X is a sum of
coherent subsheaves.

(b) For general X, show that any coherent sheaf on an open subscheme of X is
the restriction of a coherent sheaf on X.



**(c) Prove (a) for general X.

Hint: For (b), first prove the affine case. For the embedding j : U — X and a
coherent sheaf F on U look at the sheaf j,F.

Solution:

(a) When X = Spec A, then the statement translates to the following fact: An
A-module M is the sum of its finitely generated submodules. This is clear since
any m € M is contained in the submodule A -m C M. We return to the case of
general X after proving part (b).

(b) Suppose X = Spec A. Let U C X be open and let F be a coherent sheaf
on U. Since U is noetherian, we may apply Proposition I1.5.8 in Hartshorne or
Problem 3 of Sheet 3 to deduce that j,F is quasi-coherent on X. By part (a), we
have that j,F is the sum of its coherent subsheaves, i.e. j,F = Ziel G;, where
G; runs over all coherent subsheaves of j,F. We note that j* is exact in this case
since it corresponds to the exact functor G — G|y. Thus j* preserves inclusion, so
the j*G; are subsheaves of j*j,F. The sum ), G; is defined to be the image of
the morphism @ G; — j..F. Applying j* and noting that it commutes with direct
sums, we see that j*j,.F = Y ., 7°G;. Since the pullback of a coherent sheaf via
a morphism of noetherian schemes is again coherent, the j*G; are coherent on U.
We have thus written j*j,F as the sum of coherent subsheaves j*G;.

Since j is an open embedding the adjunction j*j,F — F is an isomorphism. In
particular, the sheaf j*j,F is coherent on U. Let U = U}_, (U := Spec A;) be
a finite affine open covering of U. Taking sections over Uy, the equality j*j.JF =
Y i1 J°G; yields an equality My, = ., My, where M, is a finitely generated Aj-
module and the M;, C M, are submodules. Any generator of M} is contained
in some finite sum of the M;;,. Since the G; include all coherent subsheaves of
J«F, it follows that any finite sum of the G; is equal to G; for some j € . Putting
everything together and using that My, is finitely generated, we find that My = M;
for some 7 € I. Since there are finitely many Uy, we may choose an ¢ that works
for all of them. This implies that j*j.F = j*G;. From the adjunction we obtain
j*G; = F. Thus proves (b) in the affine case.

Now let X be an arbitrary noetherian scheme. Cover X with finitely many affine
Up,...,U,. Let Fy := Fluny,- By the affine case, we know that F; extends to
a coherent sheaf F| on Uj. Since Fi|luny, = Flunv,, we may glue F and Fj to
obtain a coherent sheaf F’ over UUU; extending F. We may repeat this argument
with Uy in place of Uy and (U; UU) N Uy in place of U N U; and F' in place of F
to obtain a coherent sheaf F” on Us U U; U U extending F. Iterating yields the
desired extension of F to a coherent sheaf on X.

We will not give a proof of (c¢). There are several questions related to this exercise
that one can ask:



i. If F is quasicoherent on U, does there exist a quasicoherent sheaf G on X
such that G|y = F?

ii. If F is coherent on U, does there exist a coherent sheaf G on X such that
Glv = F?

iii. If G is quasicoherent on X such that F is a coherent subsheaf of G|y, does
there exist a coherent subsheaf F’ of G such that F = F'|;?

iv. Is every quasicoherent sheaf on X the sum of its coherent subsheaves?

We have just answered the first and second questions affirmatively. The third
and forth are related as follows: Let X be a noetherian scheme and let G be a
quasicoherent sheaf on X. Let {G;}ic; denote the set of coherent subsheaves of
G. There is a natural inclusion ¢: Zie ;1 Gi = G. For each affine open U C X,
consider the induced inclusion (3 .., Gi)lv = > ,c;(Gilv) < Gly. If this is an
isomorphism for every such U, then ¢ is as well. Since we have shown that G|y is
the sum of its coherent subsheaves, it suffices to show that each such subsheaf is
equal to G;|y for some 4. This is where (iii) is important. A priori we just know
that G;|y extends to some coherent sheaf on X, but our construction doesn’t yield
a subsheaf of G.

If we want to show (iii) in the affine case, we can look at j.JF C j.7*G. We know
there is a coherent 7’ C j,F extending F. We also have the adjunction morphism
p: G — j.5*G. We have p~'(F')|y = F since p|y is an isomorphism. A similar
gluing as in part (b) may resolve the general case.



